
SgpViz

A GAP package for semigroup
visualisation

Version 0.999.6

Manuel Delgado
José João Morais

Manuel Delgado Email: mdelgado@fc.up.pt
Homepage: https://www.fc.up.pt/cmup/mdelgado

https://gap-packages.github.io/sgpviz/
mailto://mdelgado@fc.up.pt
https://www.fc.up.pt/cmup/mdelgado

SgpViz 2

Copyright
© 2005 by Manuel Delgado and José João Morais
SgpViz package is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. For details, see the file ’GPL’ included in the package or see the FSF’s own site.

Acknowledgements
The first author acknowledges financial support of FCT, through the Centro de Matemática da Universidade do
Porto.

The second author acknowledges financial support of FCT and the POCTI program through a scholarship
given by Centro de Matemática da Universidade do Porto.

Both authors acknowledge Jorge Almeida, Vítor H. Fernandes and Pedro Silva for many helpful discussions
and comments.

CONCERNING MAINTENANCE:
The maintainer wants to acknowledge partial support by:
FCT - Fundação para a Ciência e a Tecnologia under the project PTDC/MAT/65481/2006
Centro de Matemática da Universidade do Porto (CMUP), funded by the European Regional Develop-

ment Fund through the programme COMPETE and by the Portuguese Government through the FCT project
PEst-C/MAT/UI0144/2011.

CMUP (UID/MAT/00144/2013 and UID/MAT/00144/2019), which is funded by FCT (Portugal) with na-
tional (MEC) and European structural funds through the programs FEDER, under the partnership agreement
PT2020.

Furthermore, the maintainer wants to thank the organisers of GAPDays in their several editions, as well
as several people (for advises, giving feedback, etc). Among them I would like to refer: Max Horn, James
Mitchel, Jan Philipp Wächter, João Araújo, Alfredo Costa and Teresa Melo.

Colophon
This manual describes the GAP package SgpViz, Version 0.999.6, for visualising finite semigroups.

Since Version 0.998 (released in 2008), the package is maintained by the first author.
The present package is superseded by the GAP package semigroups, by James Mitchel, in what concerns

some aspects of semigroup visualisation. We strongly recommend the usage of that package, unless you find
useful specific tools available in SgpViz but not in semigroups.

Bug reports, suggestions and comments are, of course, welcome. Please use the email address
mdelgado@fc.up.pt to this effect.

If you have benefited from the use of the SgpViz GAP package in your research, please cite it in addition
to GAP itself, following the scheme proposed in https://www.gap-system.org/Contacts/cite.html.

https://gap-packages.github.io/sgpviz/
https://gap-packages.github.io/sgpviz/
https://www.fsf.org/licenses/gpl.html
https://www.fsf.org/licenses/gpl.html
https://gap-packages.github.io/sgpviz/
https://gap-packages.github.io/sgpviz/
mailto://mdelgado@fc.up.pt
https://gap-packages.github.io/sgpviz/
https://www.gap-system.org/Contacts/cite.html

Contents

1 Introduction 4

2 Basics 5
2.1 Examples . 5
2.2 Some attributes . 5
2.3 Some basic functions . 6
2.4 Cayley graphs . 7

3 Drawings of semigroups 9
3.1 Drawing the D-class of an element of a semigroup 9
3.2 Drawing the D-classes of a semigroup . 11
3.3 Cayley graphs . 14
3.4 Schützenberger graphs . 15

4 User friendly ways to give semigroups and automata 17
4.1 Finite automata . 17
4.2 Finite semigroups . 20

References 28

Index 29

3

Chapter 1

Introduction

The aim of this package is to turn GAP more user-friendly, at least for semigroup theorists. It
requires the usage of external programs as is the case of graphviz [DEG+02], a software for drawing
graphs developed at AT & T Labs, that can be obtained at https://www.graphviz.org/. It is
used not only to draw right Cayley graphs of finite semigroups and Schüzenberger graphs of finite
inverse semigroups but also to visualise in the usual way the egg-box picture of a D-classe of a finite
semigroup.

IMPORTANT NOTE: The version of graphviz to install must be greater or equal to 1.16.

Tcl/Tk should also be available in order to run the graphical interfaces
XAutomaton and XSemigroup

used to specify automata and semigroups.

WARNING: the use of XAutomaton and XSemigroup is intended only for simple examples.
After its use one may have to start another GAP session.

4

https://www.graphviz.org/

Chapter 2

Basics

We give some examples of semigroups to be used later. We also describe some basic functions that
are not directly available from GAP, but are useful for the purposes of this package.

2.1 Examples

These are some examples of semigroups that will be used through this manual
Example

gap> f := FreeMonoid("a","b");
<free monoid on the generators [a, b]>
gap> a := GeneratorsOfMonoid(f)[1];;
gap> b := GeneratorsOfMonoid(f)[2];;
gap> r:=[[a^3,a^2],
> [a^2*b,a^2],
> [b*a^2,a^2],
> [b^2,a^2],
> [a*b*a,a],
> [b*a*b,b]];
[[a^3, a^2], [a^2*b, a^2], [b*a^2, a^2], [b^2, a^2], [a*b*a, a],

[b*a*b, b]]
gap> b21:= f/r;
<fp monoid on the generators [a, b]>

Example
gap> g0:=Transformation([4,1,2,4]);;
gap> g1:=Transformation([1,3,4,4]);;
gap> g2:=Transformation([2,4,3,4]);;
gap> poi3:= Monoid(g0,g1,g2);
<monoid with 3 generators>

2.2 Some attributes

These functions are semigroup attributes that get stored once computed.

5

SgpViz 6

2.2.1 HasCommutingIdempotents

▷ HasCommutingIdempotents(M) (attribute)

Tests whether the idempotents of the semigroup M commute.

2.2.2 IsInverseSemigroup

▷ IsInverseSemigroup(S) (attribute)

Tests whether a finite semigroup S is inverse. It is well-known that it suffices to test whether the
idempotents of S commute and S is regular. The function IsRegularSemigroup is part of GAP.

2.3 Some basic functions

2.3.1 PartialTransformation

▷ PartialTransformation(L) (function)

A partial transformation is a partial function of a set of integers of the form {1, . . . ,n}. It is
given by means of the list of images L . When an element has no image, we write 0. Returns a full
transformation on a set with one more element that acts like a zero.

Example
gap> PartialTransformation([2,0,4,0]);
Transformation([2, 5, 4, 5, 5])

2.3.2 ReduceNumberOfGenerators

▷ ReduceNumberOfGenerators(L) (function)

Given a subset L of the generators of a semigroup, returns a list of generators of the same semi-
group but possibly with less elements than L .

2.3.3 SemigroupFactorization

▷ SemigroupFactorization(S, L) (function)

L is an element (or list of elements) of the semigroup S . Returns a minimal factorization on the
generators of S of the element(s) of L . Works only for transformation semigroups.

Example
gap> el1 := Transformation([2, 3, 4, 4]);;
gap> el2 := Transformation([2, 4, 3, 4]);;
gap> f1 := SemigroupFactorization(poi3,el1);
[[Transformation([1, 3, 4, 4]), Transformation([2, 4, 3, 4])]]
gap> f1[1][1] * f1[1][2] = el1;
true
gap> SemigroupFactorization(poi3,[el1,el2]);

https://gap-packages.github.io/sgpviz/

SgpViz 7

[[Transformation([1, 3, 4, 4]), Transformation([2, 4, 3, 4])],
[Transformation([2, 4, 3, 4])]]

2.3.4 GrahamBlocks

▷ GrahamBlocks(mat) (function)

mat is a matrix as displayed by DisplayEggBoxOfDClass(D); of a regular D-class D. This func-
tion outputs a list [gmat, phi] where gmat is mat in Graham’s blocks form and phi maps H-classes
of gmat to the corresponding ones of mat , i.e., phi[i][j] = [i’,j’] where mat[i’][j’] =
gmat[i][j]. If the argument to this function is not a matrix corresponding to a regular D-class,
the function may abort in error.

Example
gap> p1 := PartialTransformation([6,2,0,0,2,6,0,0,10,10,0,0]);;
gap> p2 := PartialTransformation([0,0,1,5,0,0,5,9,0,0,9,1]);;
gap> p3 := PartialTransformation([0,0,3,3,0,0,7,7,0,0,11,11]);;
gap> p4 := PartialTransformation([4,4,0,0,8,8,0,0,12,12,0,0]);;
gap> css3:=Semigroup(p1,p2,p3,p4);
<transformation semigroup of degree 13 with 4 generators>
gap> el := Elements(css3)[8];;
gap> D := GreensDClassOfElement(css3, el);;
gap> IsRegularDClass(D);
true
gap> DisplayEggBoxOfDClass(D);
[[1, 1, 0, 0],

[1, 1, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 1]]

gap> mat := [[1, 0, 1, 0],
> [0, 1, 0, 1],
> [0, 1, 0, 1],
> [1, 0, 1, 0]];;
gap> res := GrahamBlocks(mat);;
gap> PrintArray(res[1]);
[[1, 1, 0, 0],

[1, 1, 0, 0],
[0, 0, 1, 1],
[0, 0, 1, 1]]

gap> PrintArray(res[2]);
[[[1, 1], [1, 3], [1, 2], [1, 4]],

[[4, 1], [4, 3], [4, 2], [4, 4]],
[[2, 1], [2, 3], [2, 2], [2, 4]],
[[3, 1], [3, 3], [3, 2], [3, 4]]]

2.4 Cayley graphs

2.4.1 RightCayleyGraphAsAutomaton

▷ RightCayleyGraphAsAutomaton(S) (function)

https://gap-packages.github.io/sgpviz/

SgpViz 8

Computes the right Cayley graph of a finite monoid or semigroup S . It uses the GAP buit-in
function CayleyGraphSemigroup to compute the Cayley Graph and returns it as an automaton with-
out initial nor final states. (In this automaton state i represents the element Elements(S)[i].) The
Automata package is used to this effect.

Example
gap> rcg := RightCayleyGraphAsAutomaton(b21);
< deterministic automaton on 2 letters with 6 states >
gap> Display(rcg);

1 2 3 4 5 6
a | 2 4 6 4 2 4
b | 3 5 4 4 4 3

Initial state: []
Accepting state: []

2.4.2 RightCayleyGraphMonoidAsAutomaton

▷ RightCayleyGraphMonoidAsAutomaton(S) (function)

This function is a synonym of RightCayleyGraphAsAutomaton (2.4.1).

https://gap-packages.github.io/sgpviz/

Chapter 3

Drawings of semigroups

There are some pictures that may give a lot of information about a semigroup. This is the case of the
egg-box picture of the D-classes, the right Cayley graph of a finite monoid and the Schützenberger
graphs of a finite inverse monoid.

3.1 Drawing the D-class of an element of a semigroup

3.1.1 DrawDClassOfElement

▷ DrawDClassOfElement(arg) (function)

This function uses DotForDrawingDClassOfElement (3.1.2) to compute the dot code to produce
the image that is then displayed. It takes as arguments a semigroup followed by a transformation which
is the element whose D-class will be drawn. Optionally we can then specify n lists of elements and the
elements of each list will be drawn in different colours. Finally, if the last argument is the integer 1 then
the elements will appear as transformations, otherwise they will appear as words. The idempotents
will be marked with a * before them.

This last optional argument may also be the integer 2 and in this case the elements will appear as
integers, where i represents the element Elements(S)[i].

Example
gap> DrawDClassOfElement(poi3, Transformation([1,4,3,4]));
gap> DrawDClassOfElement(poi3, Transformation([1,4,3,4]),1);
gap> DrawDClassOfElement(poi3, Transformation([1,4,3,4]),
[Transformation([2, 3, 4, 4])],1);

gap> DrawDClassOfElement(poi3, Transformation([1,4,3,4]),
[Transformation([2, 3, 4, 4]), Transformation([2, 4, 3, 4])],
[Transformation([2, 4, 3, 4])],1);

gap> DrawDClassOfElement(poi3, Transformation([1,4,3,4]),
[Transformation([2, 4, 3, 4])],"Dclass",1);

This is the image produced by the first command in the previous example:

9

SgpViz 10

This is the image produced by the fourth command in the previous example:

This is the image produced by the last command in the previous example:

3.1.2 DotForDrawingDClassOfElement

▷ DotForDrawingDClassOfElement(arg) (function)

This function computes the dot code that can be used to produce a drawing for the D-class of an
element of a semigroup. This can be done by using the function DrawDClassOfElement (3.1.1) (if
the system is properly configured) or by the user in some independent way. The arguments and options
are the same than those of DrawDClassOfElement (3.1.1).

Example
gap> DotForDrawingDClassOfElement(poi3,Transformation([1,4,3,4]));

"digraph DClassOfElement {\ngraph [center=yes,ordering=out];\nnode [shape=pla\
intext];\nedge [color=cornflowerblue,arrowhead=none];\n1 [label=<\n<TABLE BORD\
ER=\"0\" CELLBORDER=\"0\" CELLPADDING=\"0\" CELLSPACING=\"0\" PORT=\"1\">\n<TR\
><TD BORDER=\"0\"><TABLE CELLSPACING=\"0\"><TR><TD BGCOLOR=\"white\" BORDER=\"\
0\">*abc</TD></TR>\n</TABLE></TD><TD BORDER=\"0\"><TABLE CELLSPACING=\"0\"><TR\
><TD BGCOLOR=\"white\" BORDER=\"0\">a</TD></TR>\n</TABLE></TD><TD BORDER=\"0\"\
><TABLE CELLSPACING=\"0\"><TR><TD BGCOLOR=\"white\" BORDER=\"0\">ab</TD></TR>\
\n</TABLE></TD></TR>\n<TR><TD BORDER=\"0\"><TABLE CELLSPACING=\"0\"><TR><TD BG\
COLOR=\"white\" BORDER=\"0\">bc</TD></TR>\n</TABLE></TD><TD BORDER=\"0\"><TABL\
E CELLSPACING=\"0\"><TR><TD BGCOLOR=\"white\" BORDER=\"0\">*bca</TD></TR>\n</T\

https://gap-packages.github.io/sgpviz/

SgpViz 11

ABLE></TD><TD BORDER=\"0\"><TABLE CELLSPACING=\"0\"><TR><TD BGCOLOR=\"white\" \
BORDER=\"0\">b</TD></TR>\n</TABLE></TD></TR>\n<TR><TD BORDER=\"0\"><TABLE CELL\
SPACING=\"0\"><TR><TD BGCOLOR=\"white\" BORDER=\"0\">c</TD></TR>\n</TABLE></TD\
><TD BORDER=\"0\"><TABLE CELLSPACING=\"0\"><TR><TD BGCOLOR=\"white\" BORDER=\"\
0\">ca</TD></TR>\n</TABLE></TD><TD BORDER=\"0\"><TABLE CELLSPACING=\"0\"><TR><\
TD BGCOLOR=\"white\" BORDER=\"0\">*cab</TD></TR>\n</TABLE></TD></TR>\n</TABLE>\
>];\n}\n"

By using Print (or PrinTo, if one wants to print to a file) the string is displayed as follows:
Example

gap> Print(last);
digraph DClassOfElement {
graph [center=yes,ordering=out];
node [shape=plaintext];
edge [color=cornflowerblue,arrowhead=none];
1 [label=<
<TABLE BORDER="0" CELLBORDER="0" CELLPADDING="0" CELLSPACING="0" PORT="1">
<TR><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BORDER="0">*\
abc</TD></TR>
</TABLE></TD><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BOR\
DER="0">a</TD></TR>
</TABLE></TD><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BOR\
DER="0">ab</TD></TR>
</TABLE></TD></TR>
<TR><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BORDER="0">b\
c</TD></TR>
</TABLE></TD><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BOR\
DER="0">*bca</TD></TR>
</TABLE></TD><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BOR\
DER="0">b</TD></TR>
</TABLE></TD></TR>
<TR><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BORDER="0">c\
</TD></TR>
</TABLE></TD><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BOR\
DER="0">ca</TD></TR>
</TABLE></TD><TD BORDER="0"><TABLE CELLSPACING="0"><TR><TD BGCOLOR="white" BOR\
DER="0">*cab</TD></TR>
</TABLE></TD></TR>
</TABLE>>];
}

3.2 Drawing the D-classes of a semigroup

3.2.1 DrawDClasses

▷ DrawDClasses(arg) (function)

This function is similar to the previous one, except that this one draws all the D-classes of the
semigroup given as the first argument. It then takes optionally n lists of elements and the elements of

https://gap-packages.github.io/sgpviz/

SgpViz 12

each list will be drawn in different colours. It also accepts, as an optional argument, the integer 1, to
specify whether the elements will appear as words or as transformations as in the previous function.
The idempotents will be marked with a * before them.

The dot code is computed by DotForDrawingDClasses (3.2.2).
This last optional argument may also be the integer 2 and in this case the elements will appear as

integers, where i represents the element Elements(S)[i].
Example

gap> DrawDClasses(poi3);
gap> DrawDClasses(poi3, [Transformation([2, 3, 4, 4]),

Transformation([2, 4, 3, 4])],
[Transformation([2, 4, 3, 4])],1);

This is the image produced by the first command in the previous example:

https://gap-packages.github.io/sgpviz/

SgpViz 13

This is the image produced by the second command in the previous example:

3.2.2 DotForDrawingDClasses

▷ DotForDrawingDClasses(arg) (function)

This function computes the dot code that can be used to produce a drawing for the D-class of an
element of a semigroup. This can be done by using the function DrawDClasses (3.2.1) (if the system
is properly configured) or by the user in some independent way. The arguments and options are the
same than those of DrawDClasses (3.2.1).

Example
gap> Print(DotForDrawingDClasses(poi3));
digraph DClasses {
graph [center=yes,ordering=out];
node [shape=plaintext];
edge [color=cornflowerblue,arrowhead=none];
... many more lines ...
</TABLE></TD></TR>
</TABLE>>];
4:4 -> 3:3;
3:3 -> 2:2;
2:2 -> 1:1;
}

https://gap-packages.github.io/sgpviz/

SgpViz 14

3.3 Cayley graphs

3.3.1 DrawRightCayleyGraph

▷ DrawRightCayleyGraph(S) (function)

Draws the right Cayley graph of a finite monoid or semigroup S .

3.3.2 DrawCayleyGraph

▷ DrawCayleyGraph(S) (function)

This function is a synonym of DrawRightCayleyGraph (3.3.1).
For example, the command DrawCayleyGraph(b21); would produce the following image (where

state i represents the element Elements(S)[i], the neutral element is coloured in "light blue" and
all other idempotents are coloured in "light coral"):

3.3.3 DotForDrawingRightCayleyGraph

▷ DotForDrawingRightCayleyGraph(S) (function)

This function computes the dot code that is used by the previous function and can also be used by
the reader in some independent way.

https://gap-packages.github.io/sgpviz/

SgpViz 15

3.4 Schützenberger graphs

3.4.1 DrawSchutzenbergerGraphs

▷ DrawSchutzenbergerGraphs(S) (function)

Draws the Schützenberger graphs of the inverse semigroup S .
For example, DrawSchutzenbergerGraphs(poi3); would produce the following:

1

2

4

a 5

3

b

c

b

6

c 8a

7

c b

a

a b c

3.4.2 DotForDrawingSchutzenbergerGraphs

▷ DotForDrawingSchutzenbergerGraphs(arg) (function)

This function computes the dot code that can be used to produce a drawing for the
Schutzenberger Graphs of an inverse semigroup. This can be done by using the function
DrawSchutzenbergerGraphs (3.4.1) (if the system is properly configured) or by the user in some
independent way. The argument is an inverse semigroup.

Example
gap> DotForDrawingSchutzenbergerGraphs(poi3);
"digraph SchutzenbergerGraphs{\ncompound=true;\nsubgraph cluster4{\n1 [shape=\
circle];\n}\nsubgraph cluster3{\n2 -> 4 [label=\"a\",color=red];\n3 -> 2 [labe\
l=\"c\",color=green];\n4 -> 3 [label=\"b\",color=blue];\n2 [shape=circle];\n3 \
[shape=circle];\n4 [shape=circle];\n}\nsubgraph cluster2{\n5 -> 5 [label=\"b\"\
,color=blue];\n5 -> 6 [label=\"c\",color=green];\n6 -> 5 [label=\"a\",color=re\
d];\n6 -> 7 [label=\"c\",color=green];\n7 -> 7 [label=\"a\",color=red];\n7 -> \
6 [label=\"b\",color=blue];\n5 [shape=circle];\n6 [shape=circle];\n7 [shape=ci\
rcle];\n}\nsubgraph cluster1{\n8 -> 8 [label=\"a\",color=red];\n8 -> 8 [label=\

https://gap-packages.github.io/sgpviz/

SgpViz 16

\"b\",color=blue];\n8 -> 8 [label=\"c\",color=green];\n8 [shape=circle];\n}\n1\
-> 2 [lhead=cluster3,ltail=cluster4,color=cornflowerblue];\n2 -> 5 [lhead=clu\

ster2,ltail=cluster3,color=cornflowerblue];\n5 -> 8 [lhead=cluster1,ltail=clus\
ter2,color=cornflowerblue];\n}\n"

By using Print (or PrinTo, if one wants to print to a file) the string is displayed as follows:
Example

gap> Print(last);
digraph SchutzenbergerGraphs{
compound=true;
subgraph cluster4{
1 [shape=circle];
}
subgraph cluster3{
2 -> 4 [label="a",color=red];
3 -> 2 [label="c",color=green];
4 -> 3 [label="b",color=blue];
2 [shape=circle];
3 [shape=circle];
4 [shape=circle];
}
subgraph cluster2{
5 -> 5 [label="b",color=blue];
5 -> 6 [label="c",color=green];
6 -> 5 [label="a",color=red];
6 -> 7 [label="c",color=green];
7 -> 7 [label="a",color=red];
7 -> 6 [label="b",color=blue];
5 [shape=circle];
6 [shape=circle];
7 [shape=circle];
}
subgraph cluster1{
8 -> 8 [label="a",color=red];
8 -> 8 [label="b",color=blue];
8 -> 8 [label="c",color=green];
8 [shape=circle];
}
1 -> 2 [lhead=cluster3,ltail=cluster4,color=cornflowerblue];
2 -> 5 [lhead=cluster2,ltail=cluster3,color=cornflowerblue];
5 -> 8 [lhead=cluster1,ltail=cluster2,color=cornflowerblue];
}

https://gap-packages.github.io/sgpviz/

Chapter 4

User friendly ways to give semigroups
and automata

This chapter describes two Tcl/Tk graphical interfaces that can be used to define and edit semigroups
and automata.

4.1 Finite automata

4.1.1 XAutomaton

▷ XAutomaton([A]) (function)

The function Xautomaton without arguments opens a new window where an automaton may
be specified. A finite automaton (which may then be edited) may be given as argument.

Example
gap> XAutomaton();

It opens a window like the following:

Var is the GAP name of the automaton, States is the number of states, Alphabet represents
the alphabet and may be given through a positive integer (in this case the alphabet is understood to
be a,b,c,...) or through a string whose symbols, in order, being the letters of the alphabet.
The numbers corresponding to the initial and accepting states are placed in the respective boxes. The
automaton may be specified to be deterministic, non deterministic or with epsilon transitions. After
pressing the TRANSITION MATRIX button the window gets larger and the transition matrix of the
automaton may be given. The ith row of the matrix describes the action of the ith letter on the states.

17

SgpViz 18

A non deterministic automaton may be given as follows:

By pressing the button OK the GAP shell acquires the aspect shown in the following picture
and the automaton ndAUT may be used to do computations. Some computations such as getting
a rational expression representing the language of the automaton, the (complete) minimal automaton
representing the same language or the transition semigroup of the automaton, may be done directly
after pressing the FUNCTIONS button.

By pressing the button VIEW an image representing the automaton is displayed in a new window.

https://gap-packages.github.io/sgpviz/

SgpViz 19

An automaton with epsilon transitions may be given as follows shown in the following picture. The
last letter of the alphabet is always considered to be the ε . In the images it is represented by @.

A new window with an image representing the automaton may be obtained by pressing the button
VIEW .

https://gap-packages.github.io/sgpviz/

SgpViz 20

In the next example it is given an argument to the function XAutomaton.
Example

gap> A := RandomAutomaton("det",2,2);
< deterministic automaton on 2 letters with 2 states >
gap> XAutomaton(A);

It opens a window like the following:

4.2 Finite semigroups

The most common ways to give a semigroup to are through generators and relations, a set of (partial)
transformations as generating set and as syntatic semigroups of automata or rational languages.

4.2.1 XSemigroup

▷ XSemigroup([S]) (function)

The function XSemigroup without arguments opens a new window where a semigroup (or
monoid) may be specified. A finite semigroup (which may then be edited) may be given as argument.

Example
gap> XSemigroup();

https://gap-packages.github.io/sgpviz/

SgpViz 21

It opens a window like the following:

where one may choose how to give the semigroup.

4.2.2 Semigroups given through generators and relations

In the window opened by XSemigroup, by pressing the button PROCEED the window should enlarge
and have the following aspect. (If the window does not enlarge automatically, use the mouse to do it.)

GAP variable is the GAP name of the semigroup. One has then to specify the number of genera-
tors, the number of relations (which does not to be exact) and whether one wants to produce a monoid
or a semigroup. Pressing the PROCEED button one gets:

https://gap-packages.github.io/sgpviz/

SgpViz 22

The menu button FUNCTIONS has the following commands:

https://gap-packages.github.io/sgpviz/

SgpViz 23

The interface allows to add and remove GAP functions to the menu. When adding a function, the
name of the function should be provided. (In its current version, it works only with functions that have
as only argument a semigroup.)

By pressing the menu button FUNCTIONS and selecting "Draw Schutzenberger Graphs" would
pop up the following window:

https://gap-packages.github.io/sgpviz/

SgpViz 24

https://gap-packages.github.io/sgpviz/

SgpViz 25

4.2.3 Semigroups given by partial transformations

XSemigroup(poi3); would pop up the following window, where everything should be clear:

https://gap-packages.github.io/sgpviz/

SgpViz 26

4.2.4 Syntatic semigroups

XSemigroup(); would pop up the following window, where we would select "Syntatic semigroup",
press the PROCEED button and then choose either to give a "Rational expression" or an "Automaton"
by pressing one of those buttons:

If "Rational expression" is chosen, a new window pops up where the expression can be specified:

https://gap-packages.github.io/sgpviz/

SgpViz 27

After pressing the OK button, notice that the menu button FUNCTIONS appears on the main window
(lower right corner) meaning that GAP already recognizes the given semigroup:

https://gap-packages.github.io/sgpviz/

References

[DEG+02] D. Dobkin, J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz -
graph drawing programs. Technical report, AT&T Research and Lucent Bell Labs, 2002.
https://www.graphviz.org/. 4

28

Index

DotForDrawingDClasses, 13
DotForDrawingDClassOfElement, 10
DotForDrawingRightCayleyGraph, 14
DotForDrawingSchutzenbergerGraphs, 15
DrawCayleyGraph, 14
DrawDClasses, 11
DrawDClassOfElement, 9
DrawRightCayleyGraph, 14
DrawSchutzenbergerGraphs, 15

GrahamBlocks, 7

HasCommutingIdempotents, 6

IsInverseSemigroup, 6

License, 2

PartialTransformation, 6

ReduceNumberOfGenerators, 6
RightCayleyGraphAsAutomaton, 7
RightCayleyGraphMonoidAsAutomaton, 8

SemigroupFactorization, 6

XAutomaton, 17
XSemigroup, 20

29

	 Introduction
	Basics
	Examples
	Some attributes
	Some basic functions
	Cayley graphs

	 Drawings of semigroups
	 Drawing the D45class of an element of a semigroup
	 Drawing the D45classes of a semigroup
	Cayley graphs
	Schützenberger graphs

	User friendly ways to give semigroups and automata
	 Finite automata
	 Finite semigroups

	References
	Index

