Part I. Introduction

Thisis an alpha version of this book.

Getting Started
with SGML/XML

$Revision: 1.2 $
$Date: 2002/01/06 16:25:42 $

This chapter isintended to provide a quick introduction to structured markup (SGML and XML). If you're already fa
miliar with SGML or XML, you only need to skim this chapter.

To work with DocBook, you need to understand a few basic concepts of structured editing in general, and DocBook,
in particular. That's covered here. You aso heed some concrete experience with the way a DocBook document is
structured. That's covered in the next chapter.

HTML and SGML vs. XML

This chapter doesn't assume that you know what HTML is, but if you do, you have a starting point for understanding
structured markup. HTML (Hypertext Markup Language) is away of marking up text and graphics so that the most
popular web browsers can interpret them. HTML consists of a set of markup tags with specific meanings. Moreover,
HTML isavery basic type of SGML markup that is easy to learn and easy for computer applications to generate. But
thesimplicity of HTML isboth itsvirtue and itsweakness. Because of HTML 'slimitations, web users and programmers
have had to extend and enhance it by a series of customizations and revisions that still fall short of accommodating
current, to say nothing of future, needs.

SGML, on the other hand, is an international standard that describes how markup languages are defined. SGML does
not consist of particular tags or the rulesfor their usage. HTML isan example of amarkup language defined in SGML.

XML promises an intelligent improvement over HTML, and compatibility with it is already being built into the most
popular web browsers. XML is not a new markup language designed to compete with HTML, and it's not designed to
create conversion headaches for people with tons of HTML documents. XML isintended to alleviate compatibility
problems with browser software; it's a new, easier version of the standard rules that govern the markup itself, or, in
other words, anew version of SGML. Therules of XML are designed to make it easier to write both applications that
interpret itstype of markup and applicationsthat generate its markup. XML was devel oped by ateam of SGML experts
who understood and sought to correct the problems of learning and implementing SGML. XML is also extensible
markup, which means that it is customizable. A browser or word processor that is XML-capable will be able to read
any XML -based markup language that an individual user defines.

In this book, we tend to describe thingsin terms of SGML, but where there are differences between SGML and XML

(and there are only a few), we point them out. For our purposes, it doesn't really matter whether you use SGML or
XML.

Thisis an alpha version of this book.

Getting Startedwith SGML/XML

During the coming months, we anticipate that XM L -aware web browsers and other tools will become available. Nev-
ertheless, it's not unreasonable to do your authoring in SGML and your online publishing in XML or HTML. By the
same token, it's not unreasonable to do your authoring in XML.

Basic SGML/XML Concepts

Here are the basic SGML/XML concepts you need to grasp:

* structured, semantic markup

* elements
o attributes
* entities

Structured and Semantic Markup

An essential characteristic of structured markup is that it explicitly distinguishes (and accordingly “marks up” within
a document) the structure and semantic content of a document. It does not mark up the way in which the document
will appear to the reader, in print or otherwise.

In the days before word processorsit was common for atyped manuscript to be submitted to a publisher. The manuscript
identified the logical structures of the documents (chapters, section titles, and so on), but said nothing about its appear-
ance. Working independently of the author, adesigner then devel oped a specification for the appearance of the document,
and a typesetter marked up and applied the designer's format to the document.

Because presentation or appearance is usually based on structure and content, SGML markup logically precedes and
generally determines the way a document will look to areader. If you are familiar with strict, simple HTML markup,
you know that a given document that is structurally the same can also look different on different computers. That's
because the markup does not specify many aspects of adocument's appearance, although it does specify many aspects
of adocument's structure.

Many writerstype their text into aword processor, line-by-line and word-for-word, italicizing technical terms, under-
lining words for emphasis, or setting section headersin afont complementary to the body text, and finally, setting the
headers off with afew carriage returnsfore and aft. The format such awriter imposes on the words on the screen imparts
structure to the document by changing its appearance in ways that areader can more or lessreliably decode. The reli-
ability depends on how consistently and unambiguously the changes in type and layout are made. By contrast, an
SGML/XML markup of asection header explicitly specifiesthat aspecific piece of text isasection header. Thisassertion
does not specify the presentation or appearance of the section header, but it makes the fact that the text is a section
header completely unambiguous.

SGML and XML use named elements, delimited by angle brackets (“<” and “>") to identify the markup in adocument.
In DocBook, atop-level sectionis<sect 1>, so thetitle of atop-level section named My First-Level Header would
be identified like this:

<sectl><title>My First-Level Header</title>
Note the following features of this markup:
Clarity

A title beginswith< titl e>andendswith</titl e>. Thesect 1 aso hasan ending </ sect 1>, but we
haven't shown the whole section so it's not visible.

Thisis an alpha version of this book. 3

Getting Startedwith SGML/XML

Hierarchy

“My First-Level Header” isthetitle of atop-level section because it occursinside atitleinasect 1. Atitle
element occurring somewhere else, say in aChapt er element, would be thetitle of the chapter.

Plain text

SGML documents can have varying character sets, but most are ASCI . XML documents use the Unicode character
set. This makes SGML and XML documents highly portable across systems and tools.

In an SGML document, there is no obligatory difference between the size or face of the type in afirst-level section
header and thetitle of a book in afootnote or the first sentence of abody paragraph. All SGML files are simple text

files without font changes or special characters.! Si milarly, an SGML document does not specify the words in a text
that areto be set initalic, bold, or roman type. Instead, SGML marks certain kinds of texts for their semantic content.
For example, if a particular word is the name of afile, then the tags around it should specify that it is a filename:

Many mail prograns read configuration information fromthe
users <filenane>. mailrc</filenane> file.

If the meaning of aphraseis particularly audacious, it might get tagged for boldness of thought instead of appearance.
An SGML document contains all the information that a typesetter needs to lay out and typeset a printed page in the

most effective and consistent way, but it does not specify the layout or the type.2

Not only isthe structure of an SGML/XML document explicit, but it isalso carefully controlled. An SGML document
makes reference to a set of declarations—a document type definition (DTD)—that contains an inventory of tag names
and specifies the combination rules for the various structural and semantic features that make up a document. What
the distinctive features are and how they should be combined is “arbitrary” in the sense that almost any selection of
features and rules of composition is theoretically possible. The DocBook DTD chooses a particular set of features and
rulesfor its users.

Here is a specific example of how the DocBook DTD works. DocBook specifies that a third-level section can follow
a second-level section but cannot follow afirst-level section without an intervening second-level section.

Thisisvalid: Thisisnot:
<sectl><title> ..</title> <sect1><title> ..</title>
<sect2><title> ..</title> <sect3><title> ..</title>
<sect3><title> ..</title> C
C </ sect 3>
</ sect 3> </ sect 1>
</ sect 2>
</ sect 1>

Because an SGML/XML document has an associated DTD that describesthe valid, logical structures of the document,
you can test the logical structure of any particular document against the DTD. This processis performed by a parser.
An SGML processor must begin by parsing the document and determining if it is valid, that is, if it conforms to the
rules specified inthe DTD. XML processors are not required to check for validity, but it's always a good idea to check
for validity when authoring. Because you can test and validate the structure of an SGML/XML document with software,
a DocBook document containing a first-level section followed immediately by athird-level section will be identified
asinvalid, meaning that it's not avalid instance or example of adocument defined by the DocBook DTD. Presumably,

1some structured editors apply style to the document while it's being edited, using fonts and color to make the editing task easier, but this stylistic
information is not stored in the actual SGML/XML document. Instead, it is provided by the editing application.

2The distinction between appearance or presentation and structure or content is essential to SGML, but there is away to specify the appearance of
an SGML document: attach a stylesheet to it. There are several standards for such stylesheets: CSS, XSL, FOSIs, and DSSSL. See Chapter 4.

Thisis an alpha version of this book. 4

Getting Startedwith SGML/XML

a document with a logical structure won't normally jump from a first- to a third-level section, so the rule is a safe-
guard—but not a guarantee—of good writing, or at the very least, reasonable structure. A parser also verifies that the
names of the tags are correct and that tags requiring an ending tag have them. This meansthat avalid document isalso
onethat should format correctly, without runs of paragraphsincorrectly appearing in bold type or similar monstrosities
that everyone has seen in print at one time or another. For more information about SGML/XML parsers, see

In general, adherence to the explicit rules of structure and markup in aDTD is a useful and reassuring guarantee of
consistency and reliability within documents, across document sets, and over time. This makes SGML/XML markup
particularly desirable to corporations or governments that have large sets of documents to manage, but it is a boon to
theindividual writer aswell.

How can this markup help you?

Semantic markup makes your documents more amenable to interpretation by software, especially publishing software.
Y ou can publish awhite paper, authored asaDocBook Ar t i cl e, in the following formats:

* OntheWebinHTML

» Asastandaone document on 8%2x11 paper

* Aspart of aquarterly journal, in a6x9 format
* InBraille

* Inaudio

Y ou can produce each of these publicationsfrom exactly the same source document using the presentational techniques
best suited to both the content of the document and the presentation medium. This versatility also frees the author to
concentrate on the document content. For example, as we write this book, we don't know exactly how O'Reilly will
choose to present chapter headings, bulleted lists, SGML terms, or any of the other semantic features. And we don't
care. It's irrelevant; whatever presentation is chosen, the SGML sources will be transformed automatically into that
style.

Semantic markup can relieve the author of other, more significant burdens as well (after all, careful use of paragraph
and character styles in a word processor document theoretically allows us to change the presentation independently
from the document). Using semantic markup opens up your documentsto aworld of possibilities. Documents become,
in aloose sense, databases of information. Programs can compile, retrieve, and otherwise manipulate the documents
in predictable, useful ways.

Consider the online version of this book: almost every element name (Art i cl e, Book, and so on) is ahyperlink to
the reference page that describesthat element. Maintaining these links by hand would be tedious and might be unreliable,
as well. Instead, every element name is maked as an element using SGWMLTag: a Book is a
<sgml t ag>Book</ sgm t ag>.

Because each element name in this book is tagged semantically, the program that produces the online version can de-
termine which occurrences of the word “book” in the text are actually references to the Book element. The program
can then automatically generate the appropriate hyperlink when it should.

There's one last point to make about the versatility of SGML documents: how much you have depends on the DTD.
If you take agood photo with a high resolution lens, you can print it and copy it and scan it and put it on the Web, and
it will look good. If you start with alow-resolution picture it will not survive those transformations so well. DocBook
SGML/XML has this advantage over, say, HTML: DocBook has specific and unambiguous semantic and structural
markup, because you can convert its documentswith easeinto other presentational forms, and search them more precisely.

Thisis an alpha version of this book. 5

Getting Startedwith SGML/XML

If you start with HTML, whose markup is at a lower resolution than DocBook's, your versatility and searchability is
substantially restricted and cannot be improved.

What are the shortcomings to structural authoring?
There are afew significant shortcomings to structured authoring:

» ltrequiresasignificant changein the authoring process. Writing structured documentsisvery different from writing
with atypical word processor, and change is difficult. In particular, authors don't like giving up control over the
appearance of their words especially now that they have acquired it with the advent of word processors. But many
publishing companies need authors to relinquish that control, because book design and production remains their
job, not their authors.

» Because semantics are separate from appearance, in order to publish an SGML/XML document, a stylesheet or
other tool must create the presentational form from the structural form. Writing stylesheets is a skill in its own
right, and though not every author among a group of authors hasto learn how to write them, someone has to.

» Authoring tools for SGML documents can generally be pretty expensive. While it's not entirely unreasonable to
edit SGML/XML documents with a simple text editor, it's a bit tedious to do so. However, there are a few free
tools that are SGML-aware. The widespread interest in XML may well produce new, clever, and less expensive
XML editing tools.

Elements and Attributes

SGML/XML markup consists primarily of elements, attributes, and entities. Elements are the terms we have been
speaking about mogt, likesect 1, that describe a document's content and structure. Most elements are represented by
pairs of tags and mark the start and end of the construct they surround—for example, the SGML source for this partic-
ular paragraph beginswith a<par a> tag and endswith a</ par a> tag. Someelementsare”empty” (such asDocBook's

cross-reference element, <xr ef >) and require no end tag.3

Elements can, but don't necessarily, include one or more attributes, which are additional termsthat extend the function
or refine the content of agiven element. For instance, in DocBook a<sect 1> start tag can contain an identifier—an
i d attribute—that will ultimately allow the writer to cross-referenceit or enable areader to retrieveit. End tags cannot
contain attributes. A <sect 1> element with ani d attribute looks like this:

<sect1 id="idval ue">

In SGML, the catal og of attributesthat can occur on an element is predefined. Y ou cannot add arbitrary attribute names

to an element. Similarly, the values allowed for each attribute are predefined. In XML, the use of may
allow you to add additional attributes to an element, but as of this writing, there's no way to perform validation on
those attributes.

The i d attribute is one half of a cross reference. An i dr ef attribute on another element, for example <xr ef

I i nkend="1i dval ue” >, providesthe other half. These attributes provide whatever application might processthe
SGML source with the data needed either to make a hypertext link or to substitute a named and/or numbered cross
referencein placeof the< xr ef >. Another usefor attributesisto specify subclasses of certain el ements. For instance,
you can subdivide DocBook's <syst emi t en® into URLs and email addresses by making the content of ther ol e
attribute the distinction between them, as in <systemitem rol e="URL"> versus <systenitem
rol e="email addr " >.

3in XML, thisiswritten as <xr ef / >, aswe'll see in the section the section called “ Typing an SGML Document’].
"http:/vww.w3.0rg/ TR/REC-xml-names/

Thisis an alpha version of this book. 6

http://www.w3.org/TR/REC-xml-names/

Getting Startedwith SGML/XML

Entities

Entities are afundamental concept in SGML and XML, and can be somewhat daunting at first. They serve a number
of related, but dlightly different functions, and this makes them alittle bit complicated.

In the most general terms, entities allow you to assign a name to some chunk of data, and use that nameto refer to that
data. The complexity arises because there are two different contexts in which you can use entities (inthe DTD and in
your documents), two types of entities (parsed and unparsed), and two or three different waysin which the entities can
point to the chunk of data that they name.

In the rest of this section, we'll describe each of the commonly encountered entity types. If you find the material in
this section confusing, feel freeto skip over it now and come back toit later. We'll refer to the different types of entities
asthe need arises in our discussion of DocBook. Come back to this section when you're looking for more detail.

Entities can be divided into two broad categories, general entities and parameter entities. Parameter entities are most
often used in the DTD, not in documents, so we'll describe them last. Before you can use any type of entity, it must be
formally declared. Thisis typically done in the document prologue, as we'll explain in [Chapter 4, but we will show
you how to declare each of the entities discussed here.

General Entities

In use, general entities are introduced with an ampersand (&) and end with a semicolon (;). Within the category of
genera entities, there are two types: internal general entities and external general entities.

Internal general entities

Withinternal entities, you can associate an essentially arbitrary piece of text (which may have other markup, including
references to other entities) with aname. Y ou can then include that text by referring to its name. For example, if your
document frequently refersto, say, “O'Reilly & Associates,” you might declare it as an entity:

<IENTITY ora "O Reilly &anp; Associ ates">

Then, instead of typing it out each time, you can insert it as needed in your document with the entity reference &or a; ,
simply to save time. Note that this entity declaration includes another entity reference within it. That's perfectly valid
aslong asthe referenceisn't directly or indirectly recursive.

If you find that you use a number of entities across many documents, you can add them directly to the DTD and avoid
having to include the declarations in each document. See the discussion of dbgenent . nod in [Chapter §.

External general entities

With external entities, you can reference other documents from within your document. If these entities contain document
text (SGML or XML), then references to them cause the parser to insert the text of the external file directly into your
document (these are called parsed entities). In this way, you can use entities to divide your single, logical document
into physically distinct chunks. For example, you might break your document into four chapters and store them in
separate files. At the top of your document, you would include entity declarations to reference the four files:

<IENTI TY chO1 SYSTEM "chO1. sgni >
<IENTI TY ch02 SYSTEM "ch02. sgni >
<IENTI TY ch03 SYSTEM "ch03. sgni >

Thisis an alpha version of this book. 7

Getting Startedwith SGML/XML

<IENTI TY ch04 SYSTEM "ch04. sgni >

Y our Book now consists simply of referencesto the entities:

<book>
&ch01;
&ch02;
&ch03;
&ch04;
</ book>

Sometimesit's useful to reference external filesthat don't contain document text. For example, you might want to ref-
erencean external graphic. Y ou can do thiswith entities by declaring thetype of datathat'sin the entity using anotation
(these are called unparsed entities). For example, thefollowing declaration declarestheentity t r ee asan encapsulated
PostScript image:

<IENTITY tree SYSTEM "tree. eps”" NDATA EPS>

Entities declared thisway cannot beinserted directly into your document. Instead, they must be used as entity attributes
to elements:

<graphic entityref="tree"></graphic>

Conversely, you cannot use entities declared without a notation as the value of an entity attribute.

Special characters

In order for the parser to recognize markup in your document, it must be able to distinguish markup from content. It
doesthiswith two special characters: “<,” which identifiesthe beginning of astart or endtag, and “&,” which identifies

the beginning of an entity reference.? If you want these characters to have their literal value, they must be encoded as
entity references in your document. The entity reference & t; produces a left angle bracket; &anp; produces the

arnpers%\nd.5

If you do not encode each of these as their respective entity references, then an SGML parser or application is likely
to interpret them as characters introducing elements or entities (an XML parser will always interpret them this way);
consequently, they won't appear asyou intended. If you wish to cite text that contains literal ampersands and less-than
signs, you need to transform these two charactersinto entity references before they areincluded in a DocBook document.
The only other aternative isto incorporate text that includes them in your document through some process that avoids
the parser.

In SGML, character entities are frequently declared using a third entity category (one that we deliberately chose to
overlook), called data entities. In XML, these are declared using numeric character references. Numeric character ref-

4 Inxm L, these characters are fixed. In SGML, it is possible to change the markup start characters, but we won't consider that case here. If you
change the markup start characters, you know what you're doing. While we're on the subject, in SGML, these characters only have their special
meaning if they are followed by aname character. It is, in fact, valid in an SGML (but not an XML) document to write “O'Reilly & Associates’
because the ampersand is not followed by a name character. Don't do this, however.

5 The sequence of characters that end a marked section (see the section called “Marked sectionsT), such as]]> must also be encoded with at least
one entity reference if it is not being used to end a marked section. For this purpose, you can use the entity reference > ; for the final right angle
bracket.

Thisis an alpha version of this book. 8

Getting Startedwith SGML/XML

erences resemble entity references, but technically aren't the same. They have the form ϧ , in which “999” is
the numeric character number.

In XML, the numeric character number isalwaysthe Unicode character number. In addition, XML allows hexadecimal
numeric character references of the form &#xhhhh; . In SGML, the numeric character number is a number from the
document character set that's declared in the SGML declaration.

Character entities are also used to give a name to specia characters that can't otherwise be typed or are not portable
across applications and operating systems. Y ou can then include these charactersin your document by refering to their
entity name. Instead of using the often obscure and inconsistent key combinations of your particular word processor
to type, say, an uppercase |etter U with an umlaut (U), you type in an entity for it instead. For instance, the entity for
an uppercase letter U with an umlaut has been defined as the entity Uumn , so you would typein &Uumni ; to reference
it instead of the actual character. The SGML application that eventually processes your document for presentation will
match the entity to your platform's handling of special charactersin order to render it appropriately.

Parameter Entities

Parameter entities are only recognized in markup declarations (in the DTD, for example). Instead of beginning with
an ampersand, they begin with a percent sign. Parameter entities are most frequently used to customize the DTD. For
adetailed discussion of this topic, see[Chapter §. Following are some other uses for them.

Marked sections

Y ou might use aparameter entity referencein an SGML document in amarked section. Marking sectionsisamechanism
for indicating that special processing should apply to a particular block of text. Marked sections are introduced by the
special sequence<! [keywor d[andendwith]] >. In SGML, marked sections can appear in both DTDs and document

instances. In XML, they're only alowed in the DTD.
The most common keywords are | NCLUDE, which indicates that the text in the marked section should be included in
the document; | GNORE, which indicatesthat thetext in the marked section should beignored (it compl etely disappears

from the parsed document); and CDATA, which indicatesthat all markup characterswithin that section should beignored
except for the closing characters]] >.

In SGML, these keywords can be parameter entities. For example, you might declare the following parameter entity
in your document:

<IENTITY %draft "1 NCLUDE">

Then you could put the sections of the document that are only applicablein a draft within marked sections:

<I[%lraft;]

<par a>

Thi s paragraph only appears in the draft version.
</ par a>

11>

When you're ready to print the final version, smply change thedr af t parameter entity declaration:

6 Actua ly, CDATA marked sectionsare allowed in an XML document, but the keyword cannot be a parameter entity, and it must be typed literally.
See the examples on this page.

Thisis an alpha version of this book. 9

Getting Startedwith SGML/XML

<IENTITY %draft "I GNORE">

and publish the document. None of the draft sections will appear.

How Does DocBook Fit In?

DocBook isavery popular set of tags for describing books, articles, and other prose documents, particularly technical
documentation. DocBook is defined using the native DTD syntax of SGML and XML. Like HTML, DocBook is an
example of amarkup language defined in SGML/XML.

A Short DocBook History

DocBook isamost 10 years old. It began in 1991 as ajoint project of HaL. Computer Systems and O'Reilly. Its pop-
ularity grew, and eventualy it spawned its own maintainance organization, the Davenport Group. In mid-1998, it became
a Technical Committee (TC) of the Organization for the Advancement of Structured Information Standards (OASIS).

The HaL and O'Reilly era

The DocBook DTD was originally designed and implemented by HaL. Computer Systems and O'Reilly & Associates
around 1991. It was developed primarily to facilitate the exchange of UNIX documentation originally marked up in
troff. Its design appears to have been based partly on input from SGML interchange projects conducted by the Unix
International and Open Software Foundation consortia.

When DocBook V1.1 was published, discussion about its revision and maintenance began in earnest in the Davenport
Group, a forum created by O'Reilly for computer documentation producers. Version 1.2 was influenced strongly by
Novell and Digital.

In 1994, the Davenport Group became an officially chartered entity responsible for DocBook's maintenance. DocBook
V1.2.2 was published simultaneously. The founding sponsors of this incarnation of Davenport include the following
people:

+ Jon Bosak, Novell

» DaeDougherty, O'Reilly & Associates

» Ralph Ferris, Fujitsu OSSI

» Dave Hollander, Hewlett-Packard

» EveMader, Digital Equipment Corporation
* Murray Maloney, SCO

e Conleth O'Connell, HaL. Computer Systems
» Nancy Paisner, Hitachi Computer Products
* Mike Rogers, SunSoft

e Jean Tappan, Unisys

Thisis an alpha version of this book. 10

Getting Startedwith SGML/XML

The Davenport era

Under the auspices of the Davenport Group, the DocBook DTD began to widen its scope. It was now being used by a
much wider audience, and for new purposes, such as direct authoring with SGML -aware tools, and publishing directly
to paper. Asthe largest users of DocBook, Novell and Sun had a heavy influence on its design.

In order to hel p users manage change, the new Davenport charter established the following rulesfor DocBook rel eases:

» Minorversions(“point releases’ such asV2.2) could add to the markup model, but could not changeit in abackward-
incompatible way. For example, anew kind of list element could be added, but it would not be acceptable for the
existing itemized-list model to start requiring two list items inside it instead of only one. Thus, any document
conforming to version n.0 would aso conform to n.m

» Mgjor versions (such as V3.0) could both add to the markup model and make backward-incompatible changes.
However, the changes would have to be announced in the last major release.

» Mgjor-version introductions must be separated by at least ayear.

V3.0 was released in January 1997. After that time, although DocBook's audience continued to grow, many of the
Davenport Group stalwarts became involved in the XML effort, and development slowed dramatically. The idea of
creating an official XML-compliant version of DocBook was discussed, but not implemented. (For more detailed in-
formation about DocBook V3.0 and plans for subsequent versions, see Appendix C.)

The sponsors wanted to close out Davenport in an orderly way to ensure that DocBook users would be supported. It
was suggested that OA SIS become DocBook's new home. An OASIS DocBook Technical Committee was formed in
July, 1998, with Eduardo Gutentag of Sun Microsystems as chair.

The OASIS era

The DocBook Technical Commitee is continuing the work started by the Davenport Group. The transition from Dav-
enport to OASI S has been very smooth, in part because the core design team consists of essentially the sameindividuals
(weall just changed hats).

DocBook V3.1, published in February 1999, was the first OASIS release. It integrated a number of changes that had
been “in the wings’ for sometime.

The committee is undertaking new DocBook development to ensure that the DTD continues to meet the needs of its
users.

In February, OASIS made DocBook SGML V4.1 and DocBook XML V4.1.2 pfficial OASIS Specificationst”.

Development continues, with:

* A V5.0 DTD projected for release sometimein 2001.

* Experimental KML Schemd ' versionsvailablg ¥ in January 2001.
Experimental RELAX schemas fvailablg”! in January 2001.

f?http://listsoasis—open.org/archives/members/ZOOlOstgOOOOO.html

f”http://www.waorg/XML/Schema

Vhttp://www.oasi s-open.org/docbook/xmlschemal

Vhttp://www.xml.gr.jp/relax/
Vhttp://www.oasis-open.org/dochook/rel ax/

Thisis an alpha version of this book. 11

http://lists.oasis-open.org/archives/members/200102/msg00000.html
http://www.w3.org/XML/Schema
http://www.oasis-open.org/docbook/xmlschema/
http://www.xml.gr.jp/relax/
http://www.oasis-open.org/docbook/relax/

Getting Startedwith SGML/XML

* Experimental TREX"! schemasfvalabid”"" in January 2001.

vii http://www .thai opensource.com/trex/
Y http://ww. oasi s-open.org/dochook/trex/

Thisis an alpha version of this book.

12

http://www.thaiopensource.com/trex/
http://www.oasis-open.org/docbook/trex/

Creating DocBook Documents
$Revision: 1.1$

$Date: 2001/08/02 10:22:22 $

This chapter explains in concrete, practical terms how to make DocBook documents. It's an overview of all the kinds
of markup that are possible in DocBook documents. It explains how to create several kinds of DocBook documents:
books, sets of books, chapters, articles, and reference manual entries. Theideaisto give you enough basic information
to actually start writing. Theinformation hereisintentionally skeletal; you can find “the detail s’ in the reference section
of this book.

Before we can examine DocBook markup, we have to take alook at what an SGML or XML system requires.

Making an SGML Document

SGML requiresthat your document have aspecific prologue. Thefollowing sections describe the features of the prologue.

An SGML Declaration

SGML documents begin with an optional SGML Declaration. The declaration can precede the document instance, but
generaly itisstored in a separate file that is associated with the DTD. The SGML Declaration isagrab bag of SGML
defaults. DocBook includes an SGML Declaration that is appropriate for most DocBook documents, so we won't go
into alot of detail here about the SGML Declaration.

In brief, the SGML Declaration describes, among other things, what characters are markup delimiters (the default is
angle brackets), what characters can compose tag and attribute names (usually the al phabetical and numeric characters
plus the dash and the period), what characters can legally occur within your document, how long SGML “names’ and
“numbers’ can be, what sort of minimizations (abbreviation of markup) are allowed, and so on. Changing the SGML
Declaration israrely necessary, and because many tools only partially support changes to the declaration, changing it
is best avoided, if possible.

Wayne Wholer has written an excellent tutorial on the SGML Declaration; if you're interested in more details, see ht]
tp://www.oasis-open.org/cover/wlwll.html.

A Document Type Declaration

All SGML documents must begin with a document type declaration. Thisidentifiesthe DTD that will be used by the
document and what the root element of the document will be. A typical doctype declaration for a DocBook document
looks like this:

<! DOCTYPE book PUBLIC "-//QASI S// DTD DocBook V3.1//EN'>

Thisis an alpha version of this book.

http://www.oasis-open.org/cover/wlw11.html
http://www.oasis-open.org/cover/wlw11.html

Creating DocBook Documents

This declaration indicates that the root element, which isthe first element in the hierarchical structure of the document,
will be<book> and that the DTD used will bethe oneidentified by the publicidentifier - / / QASI S/ / DTD DocBook
V3. 1/ / EN. Seefhe section called “ Public Identifiers]” later in this chapter.

An Internal Subset

It's also possible to provide additional declarationsin adocument by placing them in the document type declaration:

<! DOCTYPE book PUBLIC "-//QASI S//DTD DocBook V3.1//EN' [
<IENTITY nwal sh "Nor man Wl sh">

<IENTITY chapl SYSTEM "chapl. sgni >

<IENTITY chap2 SYSTEM "chap2. sgni >

1>

These declarations form what is known as the internal subset. The declarations stored in the file referenced by the
public or system identifier in the DOCTYPE declaration is called the external subset and it istechnically optional. Itis
legal to put the DTD in the interna subset and to have no external subset, but for aDTD as large as DocBook that
wouldn't make much sense.

Note

Theinternal subset is parsed first and, if multiple declarationsfor an entity occur, the first declaration is used.
Declarations in the internal subset override declarations in the external subset.

The Document (or Root) Element

Although comments and processing instructions may occur between the document type declaration and the root element,
the root element usually immediately follows the document type declaration:

<! DOCTYPE book PUBLIC "-//QASI S/ / DTD DocBook V3.1//EN' [
<IENTITY nwal sh "Norman Wal sh" >

<IENTITY chapl SYSTEM "chapl. sgni >

<IENTITY chap2 SYSTEM "chap2. sgni >

1>

<book>

&chapl;

&chap2;

</ book>

Y ou cannot place the root element of the document in an external entity.

Typing an SGML Document

If you are entering SGML using a text editor such as Emacs or vi, there are a few things to keep in mi nd.” Us ng a
structured text editor designed for SGML hides most of these issues.

» DocBook element and attribute names are not case-sensitive. There's no difference between <Par a> and <pAr A>.
Entity names are case-sensitive, however.

If you are interested in future XML compatibility, input all element and attribute names strictly in lowercase.

» If attribute values contain spaces or punctuation characters, you must quote them. Y ou are not required to quote
attribute valuesiif they consist of a single word or number, although it is not wrong to do so.

™ any of these things are influenced by the SGML declaration in use. For the purpose of this discussion, we assume you are using the standard
DocBook declaration.

Thisis an alpha version of this book. 14

Creating DocBook Documents

When quoting attribute values, you can use either a straight single quote ('), or a straight double quote (). Don't
usethe “curly” quotes (“ and) in your editing tool.

If you areinterested in future XML compatibility, always quote all attribute values.

e Severa forms of markup minimization are allowed, including empty tags. Instead of typing the entire end tag for
an element, you can type simply </ >. For example:

<par a>

This is <enphasi s> nportant</>: never stick the tines of a fork
in an electrical outlet.

</ par a>

Y ou can use this technique for any and every tag, but it will make your documents very hard to understand and
difficult to debug if you introduce errors. It is best to use this technique only for inline elements containing a short
string of text.

Empty start tags are al so possible, but may be even more confusing. For therecord, if you encounter an empty start
tag, the SGML parser uses the element that ended last:

<par a>
This is <enphasi s>i nportant </ enphasi s> So is <>this</para>.
</ par a>

Both “important” and “this’ are emphasized.

If you are interested in future XML compatibility, don't use any of these tricks.

» Thenull end tag (net) minimization feature allows constructions like this:

<par a>
This is <enphasis/inportant/: never stick the tines of a fork

in an electrical outlet.

</ par a>

If, instead of ending astart tag with >, you end it with aslash, then the next occurrence of a slash ends the element.

If you areinterested in future XML compatibility, don't use net tag minimization either.

If you arewilling to modify both the declaration and the DTD, even more dramatic minimizationsare possible, including
completely omitted tags and “shortcut” markup.

Removing Minimizations
Although we've made a point of reminding you about which of these minimization features are not valid in

XML, that's not really a sufficient reason to avoid using them. (Thefact that many of the minimization features
can lead to confusing, difficult-to-author documents might be.)

Thisis an alpha version of this book. 15

Creating DocBook Documents

If you want to convert one of these documentsto XML at some point in the future, you can run it through a
program like sgminorm, which will remove all the minimizations and insert the correct, verbose markup.

The sgminorm program is part of the [SP and Jade distri butionfi, which are on the CD-ROM.

Making an XML Document

In order to create DocBook documentsin XML, you'll need an XML version of DocBook. We've included one on the
CD, but it hasn't been officially adopted by the OASIS DocBook Technical Committee yet. If you're interested in the
technical details, Appendix B, describes the specific differences between SGML and XML versions of DocBook.

XML, like SGML, requires a specific prologue in your document. The following sections describe the features of the
XML prologue.

An XML Declaration

XML documents should begin with an XML declaration. Unlikethe SGML declaration, whichisagrab bag of features,
the XML declaration identifies afew simple aspects of the document:

<?xm version="1.0" standal one="no"?>

Identifying the version of XML ensures that future changes to the XML specification will not ater the semantics of
this document. The standal one declaration simply makes explicit the fact that this document cannot “ stand alone,” and

that it relieson an externa DTD. The complete details of the XML declaration are described inthe XML specificatiorii”.

A Document Type Declaration
Strictly speaking, XML documents don't require a DTD. Redlistically, DocBook XML documents will have one.

The document type declaration identifiesthe DTD that will be used by the document and what the root element of the
document will be. A typical doctype declaration for a DocBook document looks like this:

<?xm version='"1.0"?>
<! DOCTYPE book PUBLIC "-//Norman \Wal sh//DTD DocBk XM. V3. 1.4//EN'
"http://nwal sh. com docbook/ xm /3. 1. 4/ db3xm . dt d" >

This declaration indicates that the root element will be <book> and that the DTD used will be the one indentified by
thepublicidentifier- / / Nor man Wal sh// DTD DocBk XM. V3. 1. 4// EN. External declarationsin XML must
include a system identifier (the public identifier is optional). In this example, the DTD is stored on aweb server.

System identifiersin XML must be URIs. Many systems may accept filenames and interpret them locally asfi | e:
URLSs, but it's always correct to fully qualify them.

An Internal Subset

It's also possible to provide additional declarationsin adocument by placing them in the document type declaration:

<?xm version='"1.0"?>

<! DOCTYPE book PUBLIC "-//Norman Wl sh//DTD DocBk XM. V3. 1.4/ EN'
"http://nwal sh. coml docbook/ xm /3. 1. 4/ db3xm . dtd" [

<IENTITY nwal sh "Nornman \Wal sh">

<IENTITY chapl SYSTEM "chapl. sgni >

i http://www.jclark.com/
Mhttp://mww.w3.0rg/ TRIREC-xml

Thisis an alpha version of this book. 16

http://www.jclark.com/
http://www.w3.org/TR/REC-xml

Creating DocBook Documents

<IENTITY chap2 SYSTEM "chap2. sgni >
1>

These declarations form what is known as the internal subset. The declarations stored in the file referenced by the
public or system identifier in the DOCTYPE declaration is called the external subset, which is technically optional. It
islegal to put the DTD in the internal subset and to have no external subset, but for aDTD as large as DocBook, that
would make very little sense.

Note

Theinternal subset isparsed firstin XML and, if multiple declarationsfor an entity occur, thefirst declaration
isused. Declarations in the internal subset override declarations in the external subset.

The Document (or Root) Element

Although comments and processing instructions may occur between the document type declaration and the root el ement,
the root element usually immediately follows the document type declaration:

<?xm version='"1.0"?>

<! DOCTYPE book PUBLIC "-//Norman Wl sh//DTD DocBk XM. V3.1.4//EN'
"http://nwal sh. coml docbook/ xm /3. 1. 4/ db3xm . dtd" [

<IENTITY nwal sh "Nornman \Wal sh">

<IENTITY chapl SYSTEM "chapl. sgni >

<IENTITY chap2 SYSTEM "chap2. sgni >

1>

<book>. .. </ book>

Theimportant point isthat the root element must be physically present immediately after the document type declaration.
Y ou cannot place the root element of the document in an external entity.

Typing an XML Document

If you are entering SGML using a text editor such as Emacs or vi, there are a few things to keep in mind. Using a
structured text editor designed for XML hides most of these issues.

* InXML, al markupiscase-sensitive. Inthe XML version of DocBook, you must alwaystypeall element, attribute,
and entity namesin lowercase.

* You arerequired to quote all attribute valuesin XML.

When quoting attribute values, you can use either a straight single quote ('), or a straight double quote (). Don't
use the “curly” quotes (“ and ") in your editing tool.

» Empty elementsin XML are marked with adistinctive syntax: <xr ef / >.
* Processing instructionsin XML begin and end with a question mark: <?pi t ar get dat a?>.

» XML wasdesigned to be served, received, and processed over the Web. Two of its most important design principles
are ease of implementation and interoperability with both SGML and HTML.

The markup minimization features in SGML documents make it more difficult to process, and harder to write a
parser to interpret it; these minimization features also run counter to the XML design principles named above. As
aresult, XML does not support them.

Thisis an alpha version of this book. 17

Creating DocBook Documents

Luckily, a good authoring environment can offer all of the features of markup minimization without interfering
with theinteroperability of documents. And because XML toolsare easier to write, it'slikely that good, inexpensive
XML authoring environments will be available eventually.

XML and SGML Markup Considerations in This Book

Conceptually, almost everything in this book applies equally to SGML and XML. But because DocBook V3.1 is an
SGML DTD, we naturally tend to use SGML conventionsin our writing. If you're primarily interested in XML, there
arejust afew small detailsto keep in mind.

» XML iscase-senditive, whilethe SGML version of DocBook isnot. In thisbook, we've chosen to present the el ement
names using mixed case (Book, i ndext er m XRef , and so on), but in the DocBook XML DTD, al element,
attribute, and entity names are strictly lowercase.

o Empty element start tagsin XML are marked with a distinctive syntax: <xr ef / >. In SGML, the trailing slash is
not present, so some of our examples need dlight revisionsto be valid XML elements.

* Processing instructions in XML begin and end with a question mark: <?pi t ar get dat a?>. In SGML, the
trailing question mark is not present, so some of our examples need dlight revisionsto be valid XML elements.

e Generally we use public identifiers in examples, but whenever system identifiers are used, don't forget that XML
system identifiers must be Uniform Resource Indicators (URIs), in which SGML system identifiers are usually
simple filenames.

For amore detailed discussion of DocBook and XML, see Appendix B.

Public Identifiers, System Identifiers, and Catalog Files

When aDTD or other external file is referenced from a document, the reference can be specified in three ways: using
a public identifier, a system identifier, or both. In XML, the system identifier is generally required and the public

identifier is optional. In SGML, neither is required, but at |east one must be preﬁent.8

A publicidentifier isaglobally unique, abstract name, such as the following, which isthe official public identifier for
DocBook V3.1

-// OASI S/ / DTD DocBook V3. 1//EN

The introduction of XML has added some small complications to system identifiers. In SGML, a system identifier
generaly pointsto asingle, local version of afileusing local system conventions. In XML, it must point withaUniform
Resource Indicator (URI). The most common URI today is the Uniform Resource Locator (URL), which is familiar
to anyone who browsesthe Web. URLsarealot like SGML system identifiers, because they generally pointtoasingle
version of afile on a particular machine. In the future, Uniform Resource Names (URN), another form of URI, will
allow XML system identifiers to have the abstract characteristics of public identifiers.

The following filename is an example of an SGML system identifier:

/usr/1ocal /sgm/dochook/ 3. 1/ docbook. dt d
An equivalent XML system identifier might be:

file:///usr/local/sgm/docbook/ 3.1/ docbook. dtd

8 Thisis not absol utely true. SGML allows for the possibility that the reference could beimplied by the application, but thisis very rarely the case.

Thisis an alpha version of this book. 18

Creating DocBook Documents

The advantage of using the public identifier isthat it makes your documents more portable. For any system on which
DocBook isinstalled, the public identifier will resolve to the appropriatelocal version of theDTD (if public identifiers
can be resolved at all).

Public identifiers have two disadvantages:

» Because XML does not require them, and because system identifiers are required, developing XML tools may not
provide adequate support for public identifiers. To work with these systems you must use system identifiers.

» Publicidentifiersaren't magical. They're simply amethod of indirection. For them to work, there must be aresolution

mechanism for public identifiers. Luckily, several years ago, SGML Open (now PASIS"Y) described a standard
mechanism for mapping public identifiers to system identifers using catalog files.

See [DASIS Technical Resolution 9401:1997 (Amendment 2 to TR 940D)]Y

Public Identifiers

Animportant characteristic of public identifiersisthat they are globally unique. Referring to a document with apublic
identifier should mean that the identifier will resolve to the same actual document on any system even though the loc-
ation of that document on each system may vary. Asarule, you should never reuse public identifiers, and a published
revision should have a new public identifier. Not following these rules defeats one purpose of the public identifier.

A public identifier can be any string of upper- and lowercase letters, digits, any of the following symbols. “™, “(“, “)”,

wgn wm owm owwow

SO e e e e=" 4?7, and white space, including line breaks.

Formal public identifiers

Most public identifiers conform to the SO 8879 standard that defines formal public identifiers. Formal public identi-

fiers, frequently referred to as FPI, have a prescribed format that can ensure uniqueneﬁ.s:9

prefix//owner-identifier//
text-class text-description//
| anguage/ / di spl ay-versi on

Here are descriptions of the identifiersin this string:
prefix

Theprefix iseither a“+” or a“- " Registered public identifiers begin with “+”; unregistered identifiers begin
with “-".

(ISO standards sometimes use a third form beginning with | SO and the standard number, but this form is only
availableto 1S0.)

The purpose of registration is to guarantee a unique owner-identifier. There are few authorities with the power to
issue registered public identifiers, so in practice unregistered identifiers are more common.

Vhttp://www.oasi s-open.org/
Vhttp://www.oasi s-open.org/html/a401.htm

9 Essentially, it can ensure that two different owners won't accidentally tread on each other. Nothing can prevent a given owner from reusing public
identifiers, except maybe common sense.

Thisis an alpha version of this book. 19

http://www.oasis-open.org/
http://www.oasis-open.org/html/a401.htm

Creating DocBook Documents

The Graphics Communication A ssoci ati ori"i (GCA) can assign registered public identifiers. They do thisby issuing
the applicant a unique string and declaring the format of the owner identifier. For example, the Davenport Group
was issued the string “A00002" and could have published DocBook using an FPI of the following form:

+//1SQ | EC 9070/ RA: : AD0002/ /. . .

Another way to use aregistered public identifier isto use the format reserved for internet domain names. For ex-
ample, O'Reilly can issue documents using an FPI of the following form:

+//IDN oreilly.com /...
Asof DocBook V3.1, the OASIS Technical Committee responsible for DocBook has el ected to use the unregistered
owner identifier, OASI S, thusits prefix is- .
-11OASIS/ /...
owner-identifier

Identifies the person or organization that owns the identifier. Registration guarantees a unique owner identifier.
Short of registration, some effort should be made to ensure that the owner identifier isglobally unique. A company
name, for example, is areasonable choice as are Internet domain names. It's also not uncommon to see the names
of individuals used as the owner-identifier, although clearly this may introduce collisions over time.

The owner-identifier for DocBook V3.1 is QASI S. Earlier versions used the owner-identifier Davenport .
text-cl ass

The text class identifies the kind of document that is associated with this public identifier. Common text classes
are

DOCUMENT

An SGML or XML document.
DTD

A DTD or part of aDTD.
ELEMENTS

A collection of element declarations.
ENTITIES

A collection of entity declarations.
NONSGML

Datathat isnot in SGML or XML.
DocBook isaDTD, thusitstext classis DTD.

t ext-description

vi http://www.gca.org/

Thisis an alpha version of this book. 20

http://www.gca.org/

Creating DocBook Documents

Thisfield provides a description of the document. The text description is free-form, but cannot include the string
/1.

The text description of DocBook isDocBook V3. 1.

In the uncommon case of unavailable public texts (FPIsfor proprietary DTDs, for example), there are afew other
options available (technically in front of or in place of the text description), but they're rarely used. 10

| anguage

Indicates the language in which the document iswritten. It isrecommended that the | SO standard two-|etter language
codes be used if possible.

DocBook is an English-language DTD, thusits language is EN.
di spl ay-version

Thisfield, which isnot frequently used, distinguishes between public textsthat are the same except for the display
device or system to which they apply.

For example, the FPI for the ISO Latin 1 character set is:

-//1S0O 8879-1986//ENTI TI ES Added Latin 1//EN

A reasonable FPI for an XML version of this character set is:

-//1S0O 8879-1986//ENTI TI ES Added Latin 1//EN /XM

System ldentifiers

System identifiers are usually filenames on the local system. In SGML, there's no constraint on what they can be.
Anything that your SGML processing system recognizesisallowed. In XML, systemidentifiersmust be URIs (Uniform
Resource I dentifiers).

The use of URIs as system identifiers introduces the possibility that a system identifier can bea URN. Thisallowsthe
system identifier to benefit from the same global uniqueness benefit asthe public identifier. It seemslikely that XML
system identifiers will eventually move in this direction.

Catalog Files

Catalog files are the standard mechanism for resolving public identifiers into system identifiers. Some resolution
mechanism is hecessary because DocBook refersto its component modules with public identifiers, and those must be
mapped to actual files on the system before any piece of software can actually load them.

The catalog file format was defined in 1994 by SGML Open (now OASIS). The formal specification is contained in
OASIS Technica Resolution 9401:1997.

Informally, acatalog is atext file that contains a number of keyword/value pairs. The most frequently used keywords
are PUBLI C, SYSTEM SGWL.DECL, DTDDECL, CATALOG, OVERRI DE, DELEGATE, and DOCTYPE.

PUBLI C

The PUBLI C keyword maps public identifiers to system identifiers:

10 See Appendix A of [maler96], for more details.

Thisis an alpha version of this book. 21

Creating DocBook Documents

PUBLI C "-// OASI S/ / DTD DocBook V3. 1//EN' "docbook/ 3. 1/ docbook. dt d"

SYSTEM

The SYSTEMkeyword maps system identifiers to system identifiers:

SYSTEM "htt p: // nwal sh. conf docbook/ xm / 1. 3/ db3xmi . dt d"
"docbook/ xm /1. 3/ db3xm . dt d"

SGMLDECL

The SGVMLDECL keyword identifies the system identifier of the SGML Declaration that should be used:

SGWL.DECL "docbook/ 3. 1/ docbook. dcl "

DTDDECL

Like SGMLDECL, DTDDECL identifiesthe SGML Declaration that should be used. DTDDECL associates adeclar-
ation with a particular public identifier for aDTD:

DTDDECL "-//QASI S/ / DTD DocBook V3. 1//EN' "docbook/ 3. 1/ docbook. dcl "

Unfortunately, it is not supported by the freetoolsthat are available. The practical benefit of DTDDECL can usually
be achieved, abeit in a dlightly cumbersome way, with multiple catalog files.

CATALOG

The CATAL OGkeyword allows one catal og to include the content of another. This can make maintenance somewhat
easier and allowsasystemto directly usethe catalog filesincluded in DTD distributions. For example, the DocBook
distribution includes a catalog file. Rather than copying each of the declarations in that catalog into your system
catalog, you can simply include the contents of the DocBook catalog:

CATALOG "docbook/ 3. 1/ cat al og"

OVERRI DE

The OVERRI DE keyword indicates whether or not public identifiers override system identifiers. If agiven declar-
ation includes both asystem identifer and a public identifier, most systems attempt to process the document refer-
enced by the system identifier, and consequently ignore the public identifier. Specifying

OVERRI DE YES
in the catal og informs the processing system that resolution should be attempted first with the public identifier.

DELEGATE

The DELEGATE keyword allows you to specify that some set of public identifiers should be resolved by another
catalog. Unlike the CATALGOG keyword, which loads the referenced catalog, DELEGATE does nothing until an
attempt is made to resolve a public identifier.

The DELEGATE entry specifies apartial public identifier and an alternate catal og:

DELEGATE "-//QASI S" "/usr/sgm /oasis/catal og"

Thisis an alpha version of this book. 22

Creating DocBook Documents

Partial public identifers are smply initial substring matches. Given the preceding entry, if an attempt is made to
match any public identifier that begins with the string - / / QASI S, the alternate catalog / usr/ sgni / oas-
i s/ cat al og will be used instead of the current catalog.

DOCTYPE

The DOCTYPE keyword allows you to specify a default system identifier. If an SGML document begins with a
DOCTYPE declaration that specifies neither a public identifier nor a system identifier (or is missing a DOCTYPE
declaration altogether), the DOCTYPE declaration may provide a default:

DOCTYPE BOOK n:/share/ sgm / docbook/ 3. 1/ docbook. dt d

A small fragment of an actual catalog file is shown in Example 2.1,

Example 2.1. A Sample Catalog

-- Comments are delimted by pairs of doubl e-hyphens,
as in SGWL and XML comments. --

OVERRI DE YES

SGWMLDECL "n:/share/ sgm / docbook/ 3. 1/ docbook. dcl "

DOCTYPE BOOK n:/share/sgm /docbook/ 3. 1/ docbook. dtd

PUBLIC "-//QASI S/ / DTD DocBook V3. 1//EN'
n: / share/ sgm / docbook/ 3. 1/ docbook. dt d

Q@ OO0 Q @

SYSTEM "htt p: // nwal sh. conf docbook/ xm / 1. 3/ db3xmi . dt d"
n: / shar e/ sgm / Nor man_Wal sh/ db3xm / db3xm . dt d

“Catal og files may also include comments.

EThis catalog specifiesthat public identifiers should be used in favor of system identifiers, if both are present.
E’The default declaration specified by this catalog is the DocBook declaration.

ﬂGiven an explicit (or implied) SGML DOCTYPE of

<I DOCCTYPE BOOK SYSTEM>

use n: / shar e/ sgm / docbook/ 3. 1/ docbook. dt d as the default system identifier. Note that this can
only apply to SGML documents because the DOCTY PE declaration aboveis not avalid XML element.

Map the OASIS public identifer to the local copy of the DocBook V3.1 DTD.

Thisis an alpha version of this book. 23

Creating DocBook Documents

ﬂMap asystem identifer for the XML version of DocBook to alocal version.

A few notes:

 It'snot uncommon to have several catalog files. See below, the section called “ L ocating catalog files”.

» Likeattributeson elementsyou can quote, the public identifier and system identifier are surrounded by either single
or double quotes.

* White space in the catalog file is generally irrelevant. Y ou can use spaces, tabs, or new lines between keywords
and their arguments.

* When arelative system identifier is used, it is considered to be relative to the location of the catalog file, not the
document being processed.

Locating catalog files

Catalog files go along way towards making documents more portable by introducing alevel of indirection. A problem
gtill remains, however: how does a processor locate the appropriate catalog file(s)? OASIS outlines a complete inter-
change packaging scheme, but for most applications the answer is simply that the processor looks for a file called
cat al og or CATALOG

Some applications allow you to specify alist of directoriesthat should be examined for catal og files. Other tools allow
you to specify the actual files.

Note that even if alist of directories or catalog files is provided, applications may still load catalog files that occur in
directories in which other documents are found. For example, SP and Jade always load the catalog file that occursin
the directory in which aDTD or document resides, even if that directory is not on the catalog file list.

Physical Divisions: Breaking a Document into Physical Chunks

Therest of this chapter describes how you can break documentsinto logical chunks, such as books, chapters, sections,
and so on. Before we begin, and while the subject of the internal subset is fresh in your mind, let's take a quick look
at how to break documentsinto separate physical chunks.

Actually, we've already told you how to doit. If you recall, in the preceding sections we had declarations of the form:

<IENTITY name SYSTEM "fil enane">

If you refer to the entity name in your document after this declaration, the system will insert the contents of the file
fi | ename into your document at that point. So, if you've got abook that consists of three chapters and two appendixes,
you might create afile called book. sgm which looks like this:

<! DOCTYPE book PUBLIC "-//QASI S//DTD DocBook V3. 1//EN' [
<IENTITY chapl SYSTEM "chapl. sgni >
<IENTITY chap2 SYSTEM "chap2. sgni >
<IENTITY chap3 SYSTEM "chap3. sgni >
<IENTITY appa SYSTEM "appa. sgni' >
<IENTITY appb SYSTEM "appb. sgni' >
1>

<book><title>My First Book</title>
&chapl;

&chap2;

&chaps;

&appa;

Thisis an alpha version of this book. 24

Creating DocBook Documents

&appb;
</ book>

Y ou can then write the chapters and appendixes conveniently in separate files. Note that these files do not and must
not have document type declarations.

For example, Chapter 1 might begin like this:

<chapter id="chl"><title>M First Chapter</title>
<para>My first paragraph. </ para>

But it should not begin with its own document type declaration:

<! DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook V3.1//EN'>
<chapter id="chl"><title>M First Chapter</title>
<para>My first paragraph. </ para>

Logical Divisions: The Categories of Elements in DocBook

DocBook elements can be divided broadly into these categories:
Sets

Books

Divisions, which divide books into parts

Components, which divide books or divisions into chapters
Sections, which subdivide components

Meta-information elements

Block elements

Inline elements

In the rest of this section, we'll describe briefly the elements that make up these categories. This section is designed to
give you an overview. It is not an exhaustive list of every element in DocBook.

For more information about any specific element and the elements that it may contain, consult the reference page for
the element in question.

Sets

A Set contains two or more Books. It's the hierarchical top of DocBook. You use the Set tag, for example, for a
series of books on a single subject that you want to access and maintain as a single unit, such as the manuals for an
airplane engine or the documentation for a programming language.

Books
A Book is probably the most common top-level element in a document. The DocBook definition of a book is very

loose and general. Given the variety of books authored with DocBook and the number of different conventions for
book organization used in countries around the world, attempting to impose a strict ordering of elements can make the

Thisis an alpha version of this book. 25

Creating DocBook Documents

content model extremely complex. But DocBook gives you freereign. It's very reasonableto use alocal
[ayel to impose a more strict ordering for your applications.

Books consist of a mixture of the following elements:
Dedication

Dedi cat i on pages amost always occur at the front of a book.
Navigational Components

There are afew component-level elements designed for navigation: ToC, for Tables of Contents; LoT, for Lists
of Titles (for lists of figures, tables, examples, and so on); and | ndex, for indexes.
Divisions

Divisions are the first hierarchical level below Book. They contain Par t sand Ref er ences. Part s, in turn,
contain components. Ref er ences contain Ref Ent rys. These are discussed more thoroughly in
Ealled “Making a Reference Page’’ .

Books can contain components directly and are not required to contain divisions.
Components

These are the chapter-like elements of aBook.

Components

Components are the chapter-like elements of aBook or Par t : Pr ef ace, Chapt er, Appendi x, d ossary, and
Bi bl i ography. Arti cl escan aso occur at the component level. We describe Ar t i cl esin more detail in the
section titled the section called “Making an Article’]". Components generally contain block elements and/or sections,
and some can contain navigational components and Ref Ent rys.

Sections
There are several flavors of sectioning elements in DocBook:
Sect 1...Sect 5 elements

The Sect 1...Sect 5 elements are the most common sectioning elements. They can occur in most component-
level elements. These numbered section elements must be properly nested (Sect 2scan only occur inside Sect 1s,
Sect 3scan only occur inside Sect 2s, and so on). There are five levels of numbered sections.

Sect i on element

The Sect i on element, introduced in DocBook V3.1, is an aternative to numbered sections. Sect i onsare re-
cursive, meaning that you can nest them to any depth desired.

Si npl eSect element

In addition to numbered sections, there'sthe Si npl eSect element. It isaterminal section that can occur at any
level, but it cannot have any other sectioning element nested within it.

Bri dgeHead

Thisis an alpha version of this book. 26

Creating DocBook Documents

A Bri dgeHead provides a section title without any containing section.
Ref Sect 1...Ref Sect 3 elements

These elements, which occur only in Ref Ent r ys, are analogousto the numbered section elementsin components.
There are only three levels of numbered section elementsinaRef Ent ry.

G ossDi v, Bi bl i oDi v,and| ndexDi v
A ossarys, Bi bl i ogr aphys, and | ndexes can be broken into top-level divisions, but not sections. Unlike
sections, these elements do not nest.

Meta-Information

All of the elements at the section level and above include a wrapper for meta-information about the content. See, for
example, Bookl nf o.

The meta-information wrapper is designed to contain bibliographic information about the content (Aut hor , Ti t | e,
Publ i sher, and so on) aswell as other meta-information such as revision histories, keyword sets, and index terms.
Block Elements

Theblock elements occur immediately bel ow the component and sectioning el ements. These are the (roughly) paragraph-
level elementsin DocBook. They can be divided into anumber of categories: lists, admonitions, line-specific environ-
ments, synopses of several sorts, tables, figures, examples, and a dozen or more miscellaneous elements.

Block vs. Inline Elements

At the paragraph-level, it's convenient to divide elementsinto two classes, block and inline. From a structural point of
view, this distinction is based loosely on their relative size, but it's easiest to describe the difference in terms of their
presentation.

Block elements are usually presented with a paragraph (or larger) break before and after them. Most can contain other
block elements, and many can contain character data and inline elements. Paragraphs, lists, sidebars, tables, and block
guotations are all common examples of block elements.

Inline elements are generally represented without any obvious breaks. The most common distinguishing mark of inline
elementsisafont change, but inline elements may present no visual distinction at all. Inline elements contain character
data and possibly other inline elements, but they never contain block elements. Inline elements are used to mark up
data such as cross references, filenames, commands, options, subscripts and superscripts, and glossary terms.

Lists
There are seven list elements in DocBook:
Cal | out Li st

Alistof Cal | Qut sandtheir descriptions. Cal | Qut sare marks, frequently numbered and typically on agraphic
or verbatim environment, that are described inaCal | out Li st , outside the element in which they occur.

d osslLi st
A list of glossary terms and their definitions.

Item zedLi st

Thisis an alpha version of this book. 27

Creating DocBook Documents

An unordered (bulleted) list. There are attributes to control the marks used.
O der edLi st

A numbered list. There are attributes to control the type of enumeration.
Segnent edLi st

A repeating set of named items. For example, alist of statesand their capitals might be represented asa Segnen-
t edLi st.

Si npl eLi st
An unadorned list of items. Si mpl eLi st scan beinline or arranged in columns.
Vari abl eLi st

A list of terms and definitions or descriptions. (Thislist of list typesisaVar i abl eLi st .)

Admonitions
There are five types of admonitionsin DocBook: Caut i on, | nport ant , Not e, Ti p, and Var ni ng.

All of the admonitions have the same structure: an optional Ti t | e followed by paragraph-level elements. The
DocBook DTD does not impose any specific semantics on the individual admonitions. For example, DocBook does
not mandate that \WWar ni ngs be reserved for cases where bodily harm can result.

Line-specific environments

These environments preserve whitespace and line breaks in the source text. DocBook does not provide the equivalent
of HTML's BRtag, so there's no way to interject aline break into normal running text.

Addr ess

The Addr ess element is intended for postal addresses. In addition to being line-specific, Addr ess contains
additional elements suitable for marking up names and addresses.

Li t er al Layout

A Literal Layout does not have any semantic association beyond the preservation of whitespace and line
breaks. In particular, while Pr ogr anlLi st i ng and Scr een are frequently presented in a fixed-width font, a
change of fontsis not necessarily implied by Li t er al Layout

PrograntLi sti ng

A Progranii sti ng isaverbatim environment, usually presented in Courier or some other fixed-width font,
for program sources, code fragments, and similar listings.

Screen

A Scr een isaverbatim or literal environment for text screen-captures, other fragments of an ASCII display, and
similar things. Scr een isaso afrequent catch-al for any verbatim text.

Scr eenShot

Thisis an alpha version of this book. 28

Creating DocBook Documents

Scr eenShot isactually awrapper for aGr aphi ¢ intended for screen shots of a GUI for example.
Synopsi s
A Synopsi s isaverbatim environment for command and function synopsis.

Examples, figures, and tables

Examples, Figures, and Tables are common block-level elements: Exanpl e, | nf or mal Exanpl e, Fi gur e, | n-
formal Fi gure, Tabl e, and | nf or mal Tabl e.

The distinction between formal and informal elementsis that formal elements have titles while informal ones do not.
The | nf or mal Fi gur e element was introduced in DocBook V3.1. In prior versions of DocBook, you could only
achieve the effect of an informal figure by placing its content, unwrapped, at the location where the informal figure
was desired.

Paragraphs

Therearethree paragraph elements: Par a, Si niPar a (simple paragraphs may not contain other block-level elements),
and For mal Par a (formal paragraphs have titles).

Equations

There are two block-equation elements, Equat i on and | nf or mal Equat i on (for inline equations, use | nl i n-
eEquati on).

Informal equations don't have titles. For reasons of backward-compatibility, Equat i ons are not required to have
titles. However, it may be more difficult for some stylesheet languagesto properly enumerate Equat i onsif they lack
titles.

Graphics

Graphics occur most frequently in Fi gur esand Scr eenShot s, but they can also occur without awrapper. DocBook
considersaGr aphi ¢ ablock element, even if it appearsto occur inline. For graphics that you want to be represented
inline, usel nl i neG aphi c.

DocBook V3.1 introduced a new element to contain graphics and other media types: Medi aCbj ect and itsinline
cousin, | nl i neMedi aQbj ect . These elementsmay contain video, audio, image, and text data. A single mediaobject
can contain severa aternative forms from which the presentation system can select the most appropriate object.

Questions and answers

DocBook V3.1 introduced the QandASet element, which is suitable for FAQs (Frequently Asked Questions) and
other similar collections of Quest i onsand Answer s.

Miscellaneous block elements
The following block elements are also available:
Bl ockQuot e

A block quotation. Block quotations may have At t r i but i ons.

Thisis an alpha version of this book. 29

Creating DocBook Documents

CmdSynopsi s
An environment for marking up all the parameters and options of a command.
Epi gr aph
A short introduction, typically aquotation, at the beginning of adocument. Epi gr aphsmay haveAt t ri but i ons.
FuncSynopsi s
An environment for marking up the return value and arguments of a function.
Hi ghl i ghts
A summary of the main points discussed in a book component (chapter, section, and so on).
MsgSet
A set of related error messages.
Procedure
A procedure. Procedures contain St eps, which may contain SubSt eps.
Si debar

A sidebar.

Inline Elements

Users of DocBook are provided with a surfeit of inline elements. Inline elements are used to mark up running text. In
published documents, inline elements often cause a font change or other small change, but they do not cause line or
paragraph breaks.

In practice, writers generally settle on the tagging of inline elements that suits their time and subject matter. This may
be alarge number of elements or only a handful. What isimportant is that you choose to mark up not every possible
item, but only those for which distinctive tagging will be useful in the production of the finished document for the
readers who will search through it.

The following comprehensive list may be a useful tool for the process of narrowing down the elements that you will
choose to mark up; it is not intended to overwhelm you by its sheer length. For convenience, we've divided the inlines
into several subcategories.

The classification used hereisnot meant to be authoritative, only helpful in providing afeel for the nature of theinlines.
Several elements appear in more than one category, and arguments could be made to support the placement of additional
elementsin other categories or entirely new categories.

Traditional publishing inlines
Theseinlines identify things that commonly occur in general writing:
Abbr ev

An abbreviation, especially one followed by a period.

Acronym

Thisis an alpha version of this book. 30

Creating DocBook Documents

An often pronounceable word made from the initial (or selected) letters of a name or phrase.
Enphasi s

Emphasized text.
Foot not e

A footnote. The location of the Foot not e element identifies the location of the first reference to the footnote.
Additional references to the same footnote can be inserted with Foot not eRef .

Phr ase

A span of text.
Quot e

An inline quotation.
Tr ademar k

A trademark.

Cross references

The cross reference inlines identify both explicit cross references, such as Li nk, and implicit cross references like
G ossTer m You can make the most of the implicit references explicit with aLi nkEnd attribute.

Anchor

A spot in the document.
Citation

An inline bibliographic reference to another published work.
CteRefEntry

A citation to areference page.
CteTitle

Thetitle of acited work.
First Term

Thefirst occurrence of aterm.
G ossTerm

A glossary term.
Li nk

A hypertext link.

OLi nk

Thisis an alpha version of this book. 31

Creating DocBook Documents

A link that addresses its target indirectly, through an entity.
ULi nk

A link that addresses its target by means of a URL (Uniform Resource L ocator).
XRef

A cross reference to another part of the document.

Markup
These inlines are used to mark up text for special presentation:

For ei gnPhr ase

A word or phrase in alanguage other than the primary language of the document.

Wor dAsVér d

A word meant specifically as aword and not representing anything else.
Comput er Qut put

Data, generally text, displayed or presented by a computer.
Literal

Inline text that is some literal value.
Mar kup

A string of formatting markup in text that is to be represented literally.
Pr ompt

A character or string indicating the start of an input field in a computer display.
Repl aceabl e

Content that may or must be replaced by the user.
SGWLTag

A component of SGML markup.
User | nput

Data entered by the user.

Thisis an alpha version of this book.

32

Creating DocBook Documents

Mathematics

DocBook does not define acomplete set of elementsfor representing equations. No one has ever pressed the DocBook
maintainers to add this functionality, and the prevailing opinion is that incorporating MathML""' using a mechanism

like pamespaced”!! is probably the best long-term solution.
I nli neEquati on

A mathematical equation or expression occurring inline.
Subscri pt

A subscript (asin H20, the molecular formulafor water).

Super scri pt

A superscript (asin x2, the mathematical notation for x multiplied by itself).

User interfaces
These elements describe aspects of a user interface:
Accel
A graphical user interface (GUI) keyboard shortcut.
GUI But t on
Thetext on a buttonin a GUI.
@J | con
Graphic and/or text appearing asaicon in a GUI.
QU Label
The text of alabel inaGUI.
GUI Menu
The name of amenu in aGUI.
GUI Menul t em
The name of aterminal menu iteminaGUI.
GUl Subnenu
The name of asubmenuinaGUI.
KeyCap
The text printed on a key on a keyboard.

vii http://www.w3.org/ TR/REC-MathML/
Whttp://ww.w3.0rg/ TR/IREC-xml-names/

Thisis an alpha version of this book.

33

http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/REC-xml-names/

Creating DocBook Documents

KeyCode

Theinternal, frequently numeric, identifier for akey on a keyboard.
KeyConbo

A combination of input actions.
KeySym

The symbolic name of akey on akeyboard.
MenuChoi ce

A selection or series of selections from a menu.
MouseBut t on

The conventional name of a mouse button.
Short cut

A key combination for an action that is also accessible through a menu.

Programming languages and constructs
Many of the technical inlinesin DocBook are related to programming.
Action
A response to a user event.
Cl assNane
The name of aclass, in the object-oriented programming sense.
Const ant
A programming or system constant.
Er r or Code
An error code.
Er r or Nane
An error name.
Error Type
The classification of an error message.
Functi on
The name of afunction or subroutine, asin a programming language.

I nterface

Thisis an alpha version of this book.

Creating DocBook Documents

An element of aGUI.
InterfaceDefinition

The name of aformal specification of a GUI.
Li teral

Inline text that is some literal value.
MsgText

The actual text of a message component in a message set.
Par anet er

A value or asymbolic reference to avalue.
Property

A unit of data associated with some part of a computer system.
Repl aceabl e

Content that may or must be replaced by the user.
Ret ur nVal ue

The value returned by afunction.
StructField

A field in a structure (in the programming language sense).
St ruct Name

The name of a structure (in the programming language sense).
Synbol

A namethat is replaced by avalue before processing.
Token

A unit of information.
Type

The classification of avalue.
Var Nane

The name of avariable.

Operating systems

Theseinlinesidentify parts of an operating system, or an operating environment:

Thisis an alpha version of this book.

Creating DocBook Documents

Application
The name of a software program.
Command
The name of an executable program or other software command.
EnVar
A software environment variable.
Fi | ename
The name of afile.
Medi aLabel
A name that identifies the physical medium on which some information resides.
MsgText
The actual text of a message component in a message set.
Option
An option for a software command.
Par amet er
A value or asymbolic reference to avalue.
Pr onpt
A character or string indicating the start of an input field in a computer display.
Systenltem

A system-related item or term.

General purpose
There are also a number of general-purpose technical inlines.
Application
The name of a software program.
Dat abase
The name of adatabase, or part of a database.
Emai |
An email address.

Fi | enane

Thisis an alpha version of this book.

36

Creating DocBook Documents

The name of afile.
Har dwar e
A physical part of acomputer system.
I nlineGaphic
An object containing or pointing to graphical datathat will be rendered inline.
Literal
Inline text that is some literal value.
Medi aLabel
A name that identifies the physical medium on which some information resides.
Option
An option for a software command.
Opt i onal
Optional information.
Repl aceabl e
Content that may or must be replaced by the user.
Synbol
A name that is replaced by avalue before processing.
Token
A unit of information.
Type

The classification of avalue.

Making a DocBook Book

A typical Book, in English at least, consists of some meta-informationinaBook| nf o (Ti t | e, Aut hor , Copyri ght,
and soon), oneor more Pr ef aces, several Chapt er s, and perhapsafew Appendi xes. A Book may also contain
Bi bl i ogr aphys, G ossarys, | ndexesand aCol ophon.

shows the structure of atypica book. Additional content is required where the ellipses occur.

Example 2.2. A Typical Book

<! DOCTYPE book PUBLIC "-//QASIS//DTD DocBook V3.1//EN'>
<book>
<booki nf o>

<title>My First Book</title>

Thisis an alpha version of this book. 37

Creating DocBook Documents

<aut hor ><f i r st nane>Jane</ f i r st nane><sur name>Doe</ sur nane></ aut hor >
<copyri ght ><year >1998</ year ><hol der >Jane Doe</ hol der ></ copyri ght >
</ booki nf o>

<preface><title>Foreword</title> ... </preface>
<chapter> ... </chapter>

<chapter> ... </chapter>

<chapter> ... </chapter>

<appendi x> ... </appendi x>

<appendi x> ... </appendi x>

<index> ... </index>

</ book>

Making a Chapter

Chapt er s, Pr ef aces, and Appendi xesall haveasimilar structure. They consist of aTi t | e, possibly some addi-
tional meta-information, and any number of block-level elements followed by any number of top-level sections. Each
section may in turn contain any number of block-level elements followed by any number from the next section level,

as shown in Example 2.3.
Example 2.3. A Typical Chapter

<! DOCTYPE chapter PUBLIC "-//QOASI S//DTD DocBook V3.1//EN'>
<chapter><title>W Chapter</title>

<para> ... </para>
<sectl><title>First Section</title>
<para> ... </para>

<exanple> ... </exanple>

</ sect 1>

</ chapt er>

Making an Article

For documents smaller than abook, such as: journal articles, white papers, or technical notes, Art i cl e isfrequently
the most logical starting point. The body of an Art i cl e is essentially the same as the body of a Chapt er or any
other component-level element, as shown in

Arti cl esmay include Appendi xes, Bi bl i ogr aphys, | ndexesand d ossarys.

Example2.4. A Typical Article

<! DOCTYPE article PUBLIC "-//QASIS//DTD DocBook V3.1//EN'>
<article>
<art header >
<title>My Article</title>
<aut hor ><honori fi c>Dr </ honori fi c><firstnane>Em | i o</firstnanme>
<sur nane>Li zar do</ sur nane></ aut hor >
</ art header >

<para> ... </para>

<sectl><title>On the Possibility of Going Hone</title>
<para> ... </para>

</ sect 1>

<bi bl i ography> ... </bibliography>

</article>

Thisis an alpha version of this book. 38

Creating DocBook Documents

Making a Reference Page

Thereference page or manual pagein DocBook wasinspired by, and in fact designed to reproduce, the common UNIX
“manpage”’ concept. (We usetheword "page” loosely here to mean adocument of variable length containing reference
material on a specific topic.) DocBook is rich in markup tailored for such documents, which often vary greatly in
content, however well-structured they may be. To reflect both the structure and the variability of such texts, DocBook
specifies that reference pages have a strict sequence of parts, even though several of them are actually optional.

Of the following sequence of elements that may appear in aRef Ent r y, only two are obligatory: Ref NaneDi v and
Ref Sect 1.

Docl nfo

The Docl nf o element contains meta-information about the reference page (which should not be confused with
Ref Met a, which it precedes). It marks up information about the author of the document, or the product to which
it pertains, or the document's revision history, or other such information.

Ref Met a

Ref Met a contains atitle for the reference page (which may beinferred if the Ref Met a element is not present)
and an indication of the volume number in which this reference page occurs. The ManVol Numisavery UNIX-
centric concept. Intraditional UNIX documentation, the subject of areference pageistypically identified by name
and volume number; this allows you to distinguish between the uname command, “uname(1)” in volume 1 of the
documentation and the unane function, “uname(3)” in volume 3.

Additional information of this sort such as conformance or vendor information specific to the particular environment
you are working in, may be stored in Ref M scl nf o.

Ref NameDi v

The first obligatory element is Ref NaneDi v, which is awrapper for information about whatever you're docu-
menting, rather than the document itself. It can begin with aRef Descri pt or if severa items are being docu-
mented as a group and the group has aname. The Ref NarmeDi v must contain at least one Ref Nane, that is, the
name of whatever you're documenting, and a single short statement that sums up the use or function of theitem(s)
at aglance: their Ref Pur pose. Also availableisthe Ref Ol ass, intended to detail the operating system config-
urations that the software element in question supports.

If noRef Ent ryTi t | e isgiven in the Ref Met a, the title of the reference page is the Ref Descri pt or, if
present, or the first Ref Nane.

Ref Synopsi sDi v

A Ref Synopsi sDi v isintended to provide a quick synopsis of the topic covered by the reference page. For
commands, this is generally a syntax summary of the command, and for functions, the function prototype, but
other optionsare possible. A Ti t | e isallowed, but not required, presumably because the application that processes
reference pages will generate the appropriate title if it is not given. In traditional UNIX documentation, itstitleis
always “ Synopsis’.

Ref Sect 1...Ref Sect 3
Within Ref Ent r ys, thereare only threelevelsof sectioning elements: Ref Sect 1, Ref Sect 2, and Ref Sect 3.

shows the beginning of aRef Ent ry that illustrates one possible reference page:

Thisis an alpha version of this book. 39

Creating DocBook Documents

Example 2.5. A Sample Reference Page

<refentry id="printf">

<r ef net a>
<refentrytitle>printf</refentrytitle>
<manvol nun>3S</ manvol nun

</refneta>

<r ef nanedi v>

<r ef name>pri nt f </ r ef name>

<r ef name>f pri nt f </ r ef name>

<r ef name>spri nt f </ r ef name>

<ref purpose>print formatted output</refpurpose>
</ r ef namedi v>

<r ef synopsi sdi v>

<f uncsynopsi s>

<f uncsynopsi si nf o>

#i nclude & t;stdio. h>

</ funcsynopsi si nf o>

<f uncpr ot ot ype>
<funcdef >i nt <function>printf</function></funcdef>
<par andef >const char *<paraneter>f or mat </ par anet er ></ par andef >
<par andef >. . . </ par andef >

</ funcpr ot ot ype>

<f uncpr ot ot ype>
<funcdef >i nt <function>fprintf</function></funcdef>
<par andef >FI LE *<par anet er >st r n</ par anmet er ></ par andef >
<par andef >const char *<paraneter>f or mat </ par anet er ></ par andef >
<par andef >. . . </ par andef >
</ funcpr ot ot ype>

<f uncpr ot ot ype>
<funcdef >i nt <function>sprintf</function></funcdef>
<par andef >char *<par anet er >s</ par anet er ></ par andef >
<par andef >const char *<paraneter>f or mat </ par anet er ></ par andef >
<par andef >. . . </ par andef >
</ funcpr ot ot ype>
</ funcsynopsi s>

</ ref synopsi sdi v>

<refsectl><title>Description</title>
<par a>
<i ndext er me<pri mary>functi ons</ pri mary>
<secondar y>pri nt f </ secondar y></ i ndext er n»
<i ndext ernpe<pri mary>printing function</primry></indexternpr

<function>printf</function> places output on the standard
out put stream stdout.

&hel li p;

</ par a>

Thisis an alpha version of this book.

40

Creating DocBook Documents

Making Front- and Backmatter

DocBook contains markup for the usual variety of front- and backmatter necessary for books and articles: indexes,
glossaries, bibliographies, and tables of contents. In many cases, these components are generated automatically, at
least in part, from your document by an external processor, but you can create them by hand, and in either case, store
them in DocBook.

Some forms of backmatter, like indexes and glossaries, usually require additional markup in the document to make
generation by an application possible. Bibliographies are usually composed by hand like the rest of your text, unless
you are automatically selecting bibliographic entries out of somelarger database. Our principa concern hereisto acquaint
you with the kind of markup you need to include in your documentsif you want to construct these components.

Frontmatter, like the table of contents, is almost always generated automatically from the text of a document by the
processing application. If you need information about how to mark up atable of contentsin DocBook, please consult
the reference page for ToC.

Making an Index

In some highly-structured documents such as reference manuals, you can automate the whole process of generating
an index successfully without altering or adding to the original source. Y ou can design aprocessing application to select
the information and compile it into an adequate index. But thisisrare.

In most cases—and even in the case of some reference manuals—a useful index still requires human intervention to
mark occurrences of words or concepts that will appear in the text of the index.

Marking index terms

Docbook distinguishestwo kinds of index markers: those that are singular and result in asingle page entry in theindex
itself, and those that are multiple and refer to arange of pages.

You put asingular index marker where the subject it refers to actually occursin your text:

<par a>
The ti ger<i ndexterne

<prinmary>Bi g Cats</primary>

<secondar y>Ti ger s</ secondar y></ i ndext er n»

is a very large cat indeed

</ par a>

This index term has two levels, pri nary and secondar y. They correspond to an increasing amount of indented
text in the resultant index. DocBook allows for three levels of index terms, with thethird labeled t er ti ary.

There are two ways that you can index arange of text. Thefirst isto put index marks at both the beginning and end of
the discussion. The mark at the beginning asserts that it is the start of arange, and the mark at the end refers back to
the beginning. In thisway, the processing application can determine what range of text isindexed. Here'sthe previous
tiger example recast as starting and ending index terms:

<par a>

The tiger<indextermid="tiger-desc" class="startofrange">
<primary>Bi g Cats</primry>

<secondar y>Ti ger s</ secondar y></ i ndext er n»

is a very large cat indeed...

</ par a>

Thisis an alpha version of this book. 41

Creating DocBook Documents

<par a>

So nuch for tigers<indextermstartref="tiger-desc" class="endofrange">. Let's talk about
| eopards.

</ par a>

Note that the mark at the start of the rangeidentifiesitself asthe start of arangewiththe Cl ass attribute, and provides
an | D. The mark at the end of the range points back to the start.

Another way to mark up arange of text isto specify that the entire content of an element, such as a chapter or section,
isthe complete range. In this case, all you need isfor the index term to point to the | D of the element that contains the
content in question. The Zone attribute of i ndext er mprovides this functionality.

One of the interesting features of this method is that the actual index marks do not have to occur anywhere near the
text being indexed. It is possible to collect al of them together, for example, in onefile, but it is not invalid to have
the index marker occur near the element it indexes.

Suppose the discussion of tigersin your document comprises awhole text object (likeaSect 1 or aChapt er) with
anl Dvalueof ti ger - desc. You can put the following tag anywhere in your document to index that range of text:

<i ndexterm zone="ti ger-desc" >
<prinmary>Bi g Cats</primry>
<secondar y>Ti ger s</ secondar y></ i ndext er n»

DocBook also contains markup for index hits that point to other index hits (of the same type such as " See Cats, big"
or "See also Lions"). See the reference pages for See and SeeAl so.

Printing an index

After you have added the appropriate markup to your document, an external application can use this information to
build an index. The resulting index must have information about the page numbers on which the concepts appear. It's
usually the document formatter that builds the index. In this case, it may never be instantiated in DocBook.

However, there are applications that can produce an index marked up in DocBook. The following example includes
some one- and two-level | ndexEnt ry elements (which correspond to the primary and secondary levelsin thei n-
dext er nmsthemselves) that begin with the letter D:

<! DOCTYPE i ndex PUBLIC "-//QASI S//DTD DocBook V3.1//EN'>
<i ndex><title> ndex</title>
<i ndexdi v><title>D</title>
<i ndexentry>
<pri maryi e>dat abase (bibliographic), 253, 255</primaryie>
<secondaryi e>structure, 255</secondaryie>
<secondaryi e>t ool s, 259</secondaryie>
</indexentry>
<i ndexentry>
<primaryi e>dat es (| anguage specific), 179</prinaryie>
</indexentry>
<i ndexentry>
<primaryi e>DC fonts, <enphasis>172</enphasi s>, 177</primaryi e>
<secondaryi e>Math fonts, 177</secondaryie>
</indexentry>
</i ndexdi v>
</ i ndex>

Thisis an alpha version of this book. 42

Creating DocBook Documents

Making a Glossary

A ossarys, like Bi bl i ogr aphys, are often constructed by hand. However, some applications are capable of
building askeletal index from glossary term markup in the document. If al of your terms are defined in some glossary
database, it may even be possible to construct the complete glossary automatically.

To enable automatic glossary generation, or smply automatic linking from glossary termsin the text to glossary entries,
you must add markup to your documents. In the text, you markup a term for compilation later with the inline

A ossTer mtag. Thistag can haveali nkEnd attribute whose value is the ID of the actual entry in the glossary.11

For instance, if you have this markup in your document:

<gl ossterm | i nkend="xm " >Ext ensi bl e Markup Language</gl osstern> is a new standard...

your glossary might look like this:

<! DOCTYPE gl ossary PUBLIC "-//OASI S// DTD DocBook V3.1//EN'>
<gl ossary><titl e>Exanpl e G ossary</title>

<gl ossdiv><title>E</title>

<gl ossentry id="xm "><gl osst er neExt ensi bl e Markup Language</ gl osstern
<acr onynm>XM_</ acr onynp

<gl ossdef >
<par a>Sone reasonabl e definition here.</para>
<gl ossseeal so ot herternm="sgm ">

</ gl ossdef >

</ gl ossentry>

</ gl ossdi v>

Note that the G ossTer mtag reappears in the glossary to mark up the term and distinguish it from its definition
withinthe Q@ ossEntry. Thel Dthatthe d ossEntry referencedinthetextisthelD of thed ossEntry in
the d ossary itself. You can use the link between source and glossary to create a link in the online form of your
document, as we have done with the online form of the glossary in this book.

Making a Bibliography

There are two ways to set up a bibliography in DocBook: you can have the data raw or cooked. Here's an example of
araw bibliographical item, wrapped inthe Bi bl i oent ry element:

<bi blioentry xreflabel ="Ki tes75">
<aut hor gr oup>
<aut hor ><fi r st nanme>Andr ea</ f i r st nane><sur nanme>Bahadur </ sur nane></ aut hor >
<aut hor ><f i r st name>Mar k</ ><sur nanme>Shwar ek</ ></ aut hor >
</ aut hor gr oup>
<copyri ght ><year >1974</ year ><year >1975</ year >
<hol der >Pr oduct Devel opnent International Holding N V.</holder>
</ copyri ght >
<i sbn>0- 88459- 021- 6</ i shn>
<publ i sher >
<publ i shernane>Pl enary Publications International, |nc.</publishernanme>

11 some sophisticated formatters might even be able to establish the link simply by examining the content of the terms and the glossary. In that
case, the author is not required to make explicit links.

Thisis an alpha version of this book. 43

Creating DocBook Documents

</ publ i sher >
<title>Kites</title>
<subtitle>Ancient Craft to Mddern Sport</subtitle>
<pagenuns>988- 999</ pagenuns>
<seri esi nf o>
<title>The Fam |y Creative Wrkshop</title>
<seri esvol nunms>1- 22</ seri esvol nuns>
<edi t or >
<firstnanme>All en</firstnanme>
<ot her nane rol e=m ddl e>Davenport </ ot her nane>
<sur nane>Br agdon</ sur nane>
<contrib>Editor in Chief</contrib>
</ editor>
</ seri esi nfo>
</ bi bli oentry>

The “raw” datain aBi bl i oent ry is comprehensive to a fault—there are enough fields to suit a host of different
bibliographical styles, and that isthe point. An abundance of datarequires processing applicationsto select, punctuate,
order, and format the bibliographical data, and it is unlikely that al the information provided will actually be output.

All the “cooked” datain aBi bl i o xed entry in abibliography, on the other hand, is intended to be presented to
the reader in the form and sequence in which it is provided. It even includes punctuation between the fields of data:

<bi bl i om xed>
<bi bl i onmset rel ation=article>
<sur nane>Wal sh</ sur nane>, <firstnanme>Nor man</firstnane>.
<title role=article>Introduction to Cascading Style Sheets</title>.
</ bi bl i onset >
<bi bl i onmset rel ati on=j our nal >
<title>The Wrld Wde Web Journal </title>
<vol umenun®2</ vol unenune<i ssuenunk1</i ssuenunp.
<publ i shername>0 Reilly & Associ ates, Inc.</publishernane> and
<cor pname>The World Wde Wb Consorti unx/ cor pnanme>.
<pubdat e>W nt er, 1996</ pubdat e></ bi bl i onset >.
</ bi bl i om xed>

Clearly, these two ways of marking up bibliographical entries are suited to different circumstances. Y ou should use
one or the other for your bibliography, not both. Strictly speaking, mingling the raw and the cooked may be “kosher”
asfar asthe DTD is concerned, but it will amost certainly cause problems for most processing applications.

Thisis an alpha version of this book. 44

Parsing DocBook Documents
$Revision: 1.2 $

$Date: 2002/03/23 20:57:55 $

A key feature of SGML and XML markup isthat you validate it. The DocBook DTD is a precise description of valid
nesting, the order of elements, and their content. All DocBook documents must conform to this description or they are
not DocBook documents (by definition).

A validating parser is a program that can read the DTD and a particular document and determine whether the exact
nesting and order of elementsin the document is valid according to the DTD.

If you are not using a structured editor that can enforce the markup as you type, validation with an external parser is
aparticularly important step in the document creation process. Y ou cannot expect to get rational results from subsequent
processing (such as document publishing) if your documents are not valid.

The most popular free SGML parser is SP by James Clark, available at http://www.jclark.comj.

SP includes nsgmls, a fast command-line parser. In the world of free validating XML parsers, James Clark's xp isa
popular choice.

Note

Not all XML parsersare validating, and although anon-validating parser may have many uses, it cannot ensure
that your documents are valid according to the DTD.

Validating Your Documents

The exact way in which the parser is executed varies according to the parser in use, naturally. For information about
your particular parser, consult the documentation that came with it.

Using nsgmls

The nsgmls command from SP is a validating SGML parser. The options used in the example below suppress the
normal output (- s), except for error messages, print the version number (- v), and specify the catalog file that should
be used to map public identifiers to system identifiers. Printing the version number guarantees that you always get
some output, so that you know the command ran successfully:

[n:\dbtdg] nsgms -sv -c \share\sgm\catal og test.sgm
m\j ade\nsgnl s. exe:1: SP version "1.3.2"

Thisis an alpha version of this book.

http://www.jclark.com/

Parsing DocBook Documents

Because no error messages were printed, we know our document isvalid. If you're working with adocument that you
discover has many errors, the - f option offers a handy way to direct the errorsto afile so they don't all scroll off your
screen.

If you want to validate an XML document with SP, you must make sure that SP uses the correct declaration. An XML
declaration called xm . dcl isincluded with SP.

The easiest way to make surethat SPusesxmni . dcl istoinclude the declaration explicitly on the command line when
you run nsgmls (or Jade, or other SP tools):

[n:\dbtdg] nsgms -sv -c \share\sgm\catal og m\jade\xm .dcl test.xmn
m\jade\nsgn s. exe:1: SP version "1.3.2"

Using xp

The xp distribution includes several sample programs. One of these programs, Time, performs a validating parse of
the document and prints the amount of time required to parse the DTD and the document. This program makes an ex-
cellent validity checker:

java comjclark. xm . apps. Ti ne exanpl es\si npl e. xn
6.639

The result states that it took 6.639 seconds to parse the DTD and the document. This indicates that the document is
valid. If the document isinvalid, additional error messages are displayed.

Understanding Parse Errors

Every parser produces dlightly different error messages, but most indicate exactly (at |east technically) 12\vhat iswrong
and where the error occurred. With a little experience, this information is all you'll need to quickly identify what's
wrong.

Intherest of thissection, we'll look at anumber of common errors and the messages they produce in SP. We've chosen
SP for the rest of these examples because that is the same parser used by Jade, which we'll be discussing further in

Chapter 4.
DTD Cannot Be Found

Thetelltale sign that SP could not find the DTD, or some module of the DTD, is the error message: "cannot generate
system identifier for public text ...". Generally, the errors that occur after this are spurious; if SP couldn't find some
part of the DTD, it's likely to think that everything iswrong.

Careful examination of the following document will show that we've introduced a simple typographic error into the
public identifier (the word “DocBook” is misspelled with alowercase “b”):

<! DOCTYPE chapter PUBLIC "-//QASI S//DTD Dochook XM. V4. 1.2//EN'
"http://ww. oasi s-open. or g/ docbook/ xm / 4. 1. 2/ docbookx. dt d" >
<chapter><title>Test Chapter</title>
<par a>
This is a paragraph in the test chapter. It is unrenmnarkable in

12t is often the case that you can correct an error in the document in several ways. The parser suggests one possible fix, but thisis not aways the
right fix. For example, the parser may suggest that you can correct out of context data by adding another element, when in fact it's “obvious” to
human eyes that the problem isamissing end tag.

Thisis an alpha version of this book. 46

Parsing DocBook Documents

every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

<par a>

<enphasi s rol e="bol d">Thi s</ enphasi s> par agraph cont ai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</ subscri pt>scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

SP responds dramatically to this error:

her nes: / docunent s/ books/ t dg/ exanpl es/ errs$ nsgnhs -sv -c cat1 /usr/lib/sgnt/decl aration/xnh. dcl nodtd. sgm
nsgm s:1: SP version "1.3.4"

nsgm s: nodtd. sgm 2: 76: E: coul d not resol ve host "ww. oasi s-open.org" (try again later)
nsgm s: nodtd. sgm 2: 76: E: DID did not contain el ement declaration for document type name
nsgm s: nodtd. sgm 3: 8: E: el ement "chapter" undefi ned

nsgm s: nodtd. sgm 3: 15: E: el enent "title" undefined

nsgm s: nodtd. sgm 4: 5: E: el ement "para" undefined

nsgm s: nodtd. sgm 10: 5: E: el enent "para" undefined

nsgm s: nodtd. sgm 11: 15: E: there is no attribute "rol e"

nsgm s: nodtd. sgm 11: 21: E: el enent "enphasi s" undefined

nsgm s: nodtd. sgm 12: 9: E: el enent "enphasi s" undefi ned

nsgm s: nodtd. sgm 12: 24: E: el enent "enphasi s" undefi ned

nsgm s: nodtd. sgm 13: 18: E: el enent "superscript"” undefined

nsgm s: nodtd. sgm 14: 16: E: el enent "subscript" undefined

nsgm s: nodtd. sgm 16: 5: E: el enent "para" undefined

Other thingsto look for, if you haven't misspelled the public identifier, are typosin the catalog or failure to specify a
catalog that resolves the public identifier that can't be found.

ISO Entity Set Missing

A missing entity set is another example of either amisspelled public identifier, or amissing catalog or catalog entry.

In this case, there's nothing wrong with the document, but the catalog that's been specified is missing the public iden-
tifiers for the ISO entity sets:

[n:\dbtdg] nsgms -sv -c exanpl es\errs\cat2 exanpl es\sinpl e. sgm

m\jade\nsgm s.exe:l: SP version "1.3.2"

mjaBregts een/dad gidink 3 Ydiet. al BEWard graaesganidrtifie fo phictet " S0 195/ BN TESAbk Mh Srid s Arov di 0"/ BN
m\j adB reghs. exe n/ sherel sgiv dodoodd/ 3 Vdboart . nod A 8 E referace to atity "I Sarsd’ far vii ch o systemi dartifier ool d be geerated
m\jade\ nsgm s. exe: n: / share/ sgm / docbook/ 3. 1/ dbcent . npd: 52: 0: entity was defined here
mjabrggis een/dud gh ditnk 3 1 duat. il 6 \Ward greaesgemdstifie fo phictet " S8 1985/ BN TESAbE M h Sriv s Bray Qeraas/H
m\j adB reghs. exe n/ sherel sgiv dodoodd/ 3 YV dboart . nadt 61 8 E referace to atity "I S@rsld’ far vii ch o systemi dertifier ool d be gererated
m \ j ade\ nsgni s. exe: n:/share/ sgm / docbook/ 3. 1/ dbcent . nod: 59: 0: entity was defined here
mjahrggts een/dad gifduuk 3 Ydiet. 67) Wand gredesgandatifie fo phictet "1 S08B8Q 1986/ BN TES Atk Mh Sriwl s @i ited/H

Thisis an alpha version of this book. 47

Parsing DocBook Documents

m\j add reghs. exe i/ shere/ sgiV docodd 3 1V dooat.nod B 8 E rferecetoatity "1S2rme’ far wi chro systemidatifier cod d be greraed
m \ j ade\ nsgnl s. exe: n: / share/ sgm / docbook/ 3. 1/ dbcent . nod: 66: 0: entity was defined here
m|j alregts een/dad gt diak3 ¥V diet. ral 467 Ward gedesganidatifie fo pbictet " $008R 198/ ENMTES Al Mh Srivd s Ngted R &ti 0"/ EN

The I SO entity sets are required by the DocBook DTD, but they are not distributed with it. That's because they aren't
maintained by OASIS.13

Character Data Not Allowed Here

Out of context character datais frequently caused by a missing start tag, but sometimesiit's just the result of typingin
the wrong place!

<! DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

You can't put character data here.

<par a>

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph cont ai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</ subscri pt>scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

[n:\dbtdg] nsgmis -sv -c \share\sgm\catal og exanpl es\errs\badpcdata. sgm
m\j ade\nsgnl s. exe:1: SP version "1.3.2"
m \ j ade\ nsgm s. exe: exanpl es\ err s\ badpcdat a. sgm 9: 0: E: character data is not allowed here

Chapt er saren't allowed to contain character datadirectly. Here, awrapper element, such asPar a, ismissing around
the sentence between the first two paragraphs.

Misspelled Start Tag

If you spell it wrong, the parser gets confused.

<! DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unremarkable in

13 you need to locate the entity sets, consult http://www.oas s-open.org/cover/topics.html#entities.

Thisis an alpha version of this book. 48

http://www.oasis-open.org/cover/topics.html#entities

Parsing DocBook Documents

every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

<paar >

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph cont ai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</ subscri pt>scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

[n:\docunent s\ books\ dbt dg] nsgm s -sv -c \share\sgni\catal og exanpl es\errs\n sspe
I'l.sgm

m\j ade\nsgnl s. exe:1: SP version "1.3.2"

m \j ade\ nsgnl s. exe: exanpl es\errs\m sspell.sgm 9:5: E: el enent "PAAR' undefi ned

m\ j ade\ nsgni s. exe: exanpl es\errs\ m sspel | . sgm 14: 6: E end tag for el enent "PARA' which is not open
m\ j ade\ nsgnh s. exe: exanpl es\errs\msspel | .sgm21: 9: E end tag for "PAAR omtted, but QM TTAGNOwas speci fi ed
m\j ade\ nsgnl s. exe: exanpl es\errs\m sspell.sgm 9:0: start tag was here

Luckily, these are pretty easy to spot, unlessyou accidentally spell the name of another element. In that case, your error
might appear to be out of context.

Misspelled End Tag

Spelling the end tag wrong is just as confusing.

<! DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</titel >

<par a>

This is a paragraph in the test chapter. It is unrenarkable in
every regard. This is a paragraph in the test chapter. It is
unrenmar kabl e in every regard. This is a paragraph in the test
chapter. It is unrenmarkable in every regard.

</ par a>

<par a>

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph cont ai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</subscri pt >scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unrenarkable in
every regard. This is a paragraph in the test chapter. It is
unrenar kabl e in every regard. This is a paragraph in the test
chapter. It is unrenmarkable in every regard.

</ par a>

</ chapt er>

Thisis an alpha version of this book. 49

Parsing DocBook Documents

[n:\dbtdg]nsgmls -sv -c \share\sgm \catal og exanpl es\errs\m sspell 2. sgm

m\j ade\nsgnl s. exe:1: SP version "1.3.2"

m\j ade\ nsgm s. exe: exanpl es\errs\m sspel | 2.sgm2: 35: E end tag for el ement "TlI TEL" which is not open
m\jaB reghs ee eap es\arsmssd [2 gn3 5 E doouat typedes at dlovd eat "PRR here mss gae d "FONOE, "MEIEX" stat-tag
m\jaB reghs ee eap e\ arsmssd 2 gmA 5 E doouat typedes at dl ovd enat "R here mss gae d "FONOE, "MEIEX" sat-tag
m\jaBregts ee eapg es\arsmssd [2 gni5 5 E doouat tyedess it dlovd eat "R here mss g ae d "RONOE, "MOEXT stat-tag
m\j ade\ nsgnhs. exe: exanpl es\errs\msspel 1 2.sgm21: 9 E end tag for "TITLE' omtted, but OMTTAGNOwas speci fi ed
m\j ade\ nsgnl s. exe: exanpl es\errs\m sspel |l 2. sgm 2: 9: start tag was here

m\ j ade\ nsgni s. exe: exanpl es\errs\m sspel | 2.sgm 21: 9: E end tag for "CHAPTER' whi ch i s not fi ni shed

These are pretty easy to spot as well, but look at how confused the parser became. From the parser's point of view,
failureto closetheopen Ti t | e element means that all the following elements appear out of context.

Out of Context Start Tag

Sometimes the problem isn't spelling, but placing a tag in the wrong context. When this happens, the parser tries to
figure out what it can add to your document to makeit valid. Then it proceeds asif it had seen what was added in order
to recover from the error seen, which can cause future errors.

<! DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unrenmarkabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

<para><titl e>Paragraph Wth Inlines</title>

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph contai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</ subscri pt>scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

[n:\dbtdg]nsgm's -sv -c \share\sgn \catal og exanpl es\errs\badstarttag. sgm
m\jade\nsgnl s. exe:1: SP version "1.3.2"
i siseconea aratiame P tyedst doden' TE e ismrsd ACLS; ' THRS, VREHS, G0 VBN ' TP VRIS BEQE, 'HAT) ' BAE 'O Tt -t

N HSOCOHUEND

In this example, we probably wanted a For mal Par a, so that we could have atitle on the paragraph. But note that
the parser didn't suggest this alternative. The parser only triesto add additional elements, rather than rename elements
that it's already seen.

Thisis an alpha version of this book. 50

Parsing DocBook Documents

Missing End Tag

Leaving out an end tag is alot like an out of context start tag. In fact, they're really the same error. The problem is
never caused by the missing end tag per se, rather it's caused by the fact that something following it is now out of
context.

<! DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

<par a>

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph cont ai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</ subscri pt >scri pt.

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

[n:\dbtdg] nsgms -sv -c \share\sgn \catal og exanpl es\ errs\noendtag. sgm
m\jade\nsgnl s. exe:1: SP version "1.3.2"

nyatroiseceapaersraudaanySE due tyedes dl ades 'HR e smoed 'FOKE, "GEX, "AT0] "IV, 'NE TP, "VRIG "BEUF, ' NBME tat-ta
m\ j ade\ nsgnh s. exe: exanpl es\ errs\ noendt ag. sgm20: 9: E end tag for "PARA' omtted, but QM TTAGNOwas speci fi ed
m \j ade\ nsgnl s. exe: exanpl es\ errs\noendtag. sgm 9: 0: start tag was here

In this case, the parser figured out that the best thing it could do is end the paragraph.

Bad Entity Reference

If you spell an entity name wrong, the parser will catch it.

<! DOCTYPE chapter PUBLIC "-//Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unrenmarkable in
every regard. This is a paragraph in the test chapter. It is
unrenmarkable in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

<par a>

There's no entity called &yzzy; defined in this docunent.

</ par a>

<par a>

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph contains
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>

Thisis an alpha version of this book. 51

Parsing DocBook Documents

and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</ subscri pt>scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

[n:\dbtdg] nsgms -sv -c \share\sgnl\catal og exanpl es\ errs\badent.sgm
m\jade\nsgnl s. exe:1: SP version "1.3.2"
m\j ade\ nsgnh s. exe: exanpl es\ errs\ badent . sgm 10: 26: E general entity "xyzzy" not defined and no default entity

More often than not, you'll see this when you misspell a character entity name. For example, this happens when you
type & dqou; instead of & dquo; .

Invalid 8-Bit Character

In XML, the entire range of Unicode characters is available to you, but in SGML, the declaration indicates what
characters are valid. The distributed DocBook declaration doesn't allow a bunch of fairly common 8-bit characters.

<! DOCTYPE chapter PUBLIC "-// Davenport//DTD DocBook V3.0//EN'>
<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

<par a>

The DocBook decl aration in use doesn't allow 8 bit characters
like this .

</ par a>

<par a>

<enphasi s rol e=bol d>Thi s</ enphasi s> par agraph cont ai ns
<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>
and a <superscri pt >super </ superscri pt>scri pt

and a <subscri pt >sub</subscri pt >scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unrenmnarkable in
every regard. This is a paragraph in the test chapter. It is
unrenar kabl e in every regard. This is a paragraph in the test
chapter. It is unrenmarkable in every regard.

</ par a>

</ chapt er>

[n:\dbtdg] nsgms -sv -c \share\sgm \catal og exanpl es\ errs\badchar. sgm
m\jade\nsgm s.exe:l: SP version "1.3.2"

Thisis an alpha version of this book. 52

Parsing DocBook Documents

m \ j ade\ nsgnl s. exe: exanpl es\ errs\ badchar.sgm 11: 0: EE non SGW character nunmber 147
m \ j ade\ nsgnl s. exe: exanpl es\ err s\ badchar.sgm 11: 5: EE non SGW character number 148

In this example, the Windows code page values for curly left and right quotes have been used, but they aren't in the
declared character set. Fix this by converting them to character entities.

Y ou can also fix them by changing the declaration, but if you do that, make sure all your interchange partnersare aware
of, and have a copy of, the modified declaration. See Appendix F.

Considering Other Schema Languages

Historically, DTDs were the only way to describe the valid stricture of SGML and XML documents, but that is no
longer the case. At thetime of thiswriting (January, 2001), DocBook is experimentally available in three other schema
languages:

XML Schemd !

The schema language being defined by the [W3d'" as the successor to DTDs for describing the structure of XML.
XML Schemaare likely to become aW33" Recommendation in 2001.

RELAX"

RELAX, the Regular Language description for XML) isalesscomplex alternativeto XML Schemas. TheRELAX
Core module is defined by 1SO in ISO/IEC DTR 22250-1, Document Description and Processing Languages --
Regular Language Description for XML (RELAX) -- Part 1: RELAX Core, 2000. The RELAX Namespaces module
is currently under devel opment.

[REX"

TREX, Tree Regular Expressions for XML, is another less complex alternative to XML Schemas. It is concise,
powerful, and datatype neutral.

Parsing and Validation

Before welook closer at these new schemalanguages, there's one significant difference between DTDsand al of them
that we should get out of the way: XML parsers (which may understand DTDs) build an XML information set out of
astream of characters, all of these other schemalanguages begin with an information set and perform validation oniit.

What | mean by that isthat an XML parser reads a stream of bytes:

RS S (I "v"ote" L.
T<rotpToMpotQroMC UTT YU P OME U "B 0" "o "K' ...
<M oMpT Mor QM MKT M Motirongtomar vt ovfromgrovgn e v

en [g g mor K s
interpretsthem as astream of characters (which may change the interpretation of some sequences of bytes) and constructs
some representation of the XML document. Thisrepresentation isthe set of all the XML information items encountered:

iiihyttp: /vww.w3.0rg/X ML/Schema
Vhitp:/Avww.w3.org/
Vhttp://www.w3.org/

vi http://www.xml.gr.jp/relax/

vii http://www .thai opensource.com/trex/

Thisis an alpha version of this book. 53

http://www.w3.org/XML/Schema
http://www.w3.org/
http://www.w3.org/
http://www.xml.gr.jp/relax/
http://www.thaiopensource.com/trex/

Parsing DocBook Documents

the information set of the document. The m\’“i XML Core Working Groudix isin the process of defining what an
XML Information Sef” contains.

The other schemalanguages are defined not in terms of the sequence of charactersin thefile but in terms of theinform-

ation set of the XML document. They have to work thisway because the XML Recommendeati or1’(i sayswhat an XML
document is and they all want to work on top of XML.

So what, you might ask? Well, it turns out that this has at least one very significant implication: there's no way for
these languages to provide support for entity declarations.

Anentity, like“&or a; " asashortcut for “O'Rellly & Associates’ or “&eacut e; " asamnemonicfor “€’, isafeature
of the character stream seen by the XML parser, it doesn't exist in theinformation set of valid XML documents. More
importantly, this means that even if the schemalanguage had a syntax for declaring entities, it wouldn't help the XML
parser that needs to know the definitions long before the schema language processor comes into play.

Thereareacouple of other XML featuresthat areimpacted, though not necessarily as significantly: notations and default
attribute values. One use for notationsis on external entity declarations, and aswe've already seen, the schemalanguage
istoo late to be useful for anything entity related. Default attribute values are aso problematic since you would like
them to be in the information set produced by the parser so that the schema language sees them.

A Coarse Comparison of Three XML Schema Languages

FIXME: write a short synopsis of how these languages compare.

viii http://www.w3.org/
Xhttp:/Awww.w3.org/X ML/
http://www.w3.org/TR/xml-infoset
Xittp:/www.w3.0rg/ TRIREC-xml

Thisis an alpha version of this book. 54

http://www.w3.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/REC-xml

Publishing DocBook Documents
$Revision: 1.3$

$Date: 2002/04/18 22:06:23 $

Creating and editing SGML/XML documentsis usualy only half the battle. After you've composed your document,
you'll want to publish it. Publishing, for our purposes, means either print or web publishing. For SGML and XML
documents, thisis usually accomplished with some kind of stylesheet. In the (not too distant) future, you may be able
to publish an XML document on the Web by simply putting it online with a stylesheet, but for now you'll probably
have to translate your document into HTML.

There are many ways, using both free and commercial tools, to publish SGML documents. In this chapter, we're going
to survey a number of possibilities, and then look at just one solution in detail: Jadd’ and the Modular DocBooK

Biylesheets] | We used jade to produce this book and to produce the online versions on the CD-ROM:; it is also being
deployed in other projects such asKSGVL>&t ool s "' which originated with the Linux Documentation Project.

For a brief survey of other tools, see Appendix D.

A Survey of Stylesheet Languages

Over the years, a number of attempts have been made to produce a standard stylesheet language and, failing that, a
large number of proprietary languages have been devel oped.

FOSIs

First, the U.S. Department of Defense, in an attempt to standardize stylesheets across military branches, created
the Output Specification, which isdefined in MIL-PRF-28001C, Markup Requirements and Generic Style Specific-

ation for Electronic Printed Output and Exchange of Text.14

Commonly called FOSIs (for Formatting Output Specification Instances), they are supported by a few products
including ADEPT Publisher by [Arbortex]’ and DL Composer by Datalogic3”'.

DSSSL

Thttp:/Avww.jclark.com/jadel

i http://nwal sh.com/dochook/dsssl/

ii http://www.sgmltools.org/

14 gee Eormally Published CALS Sandards [http: //mww-cal s.itsi .disa.mil/core/formal/fps.htm] for more information.
Vhitp://www.arbortext.com/

vi http://www.datal ogi cs.com/

Thisis an alpha version of this book.

http://www.jclark.com/jade/
http://nwalsh.com/docbook/dsssl/
http://nwalsh.com/docbook/dsssl/
http://www.sgmltools.org/
http://www.arbortext.com/
http://www.datalogics.com/
http://www-cals.itsi.disa.mil/core/formal/fps.htm

Publishing DocBook Documents

Next, the International Organization for Standardization (1SO) created DSSSL, the Document Style Semantics
and Specification Language. Subsets of DSSSL are supported by Jade and afew other tools, but it never achieved
widespread support.

CsSs
The W3C CSS Working Group created CSS as a style attachment language for HTML, and, more recently, XML.
XSL

Most recently, the XML effort has identified a standard Extensible Style Language (XSL) as arequirement. The
W3C XSL Working Group is currently pursuing that effort.

Stylesheet Examples

By way of comparison, here's an example of each of the standard style languages. In each case, the stylesheet fragment
shown contains the rules that reasonably formatted the following paragraph:

<par a>

This is an exanpl e paragraph. It should be presented in a
reasonabl e body font. <enphasi s>Enphasi zed</ enphasi s> wor ds
should be printed in italics. A single |level of

<enphasi s>Nest ed <enphasi s>enphasi s</ enphasi s> shoul d al so
be supported. </ enphasi s>

</ par a>

FOSI stylesheet

FOSIs are SGML documents. The element in the FOSI that controls the presentation of specific elementsisthee- i -
c (element in context) element. A sample FOSI fragment is shown in Example 4.1,

Example 4.1. A Fragment of a FOS| Stylesheet

<e-i-c gi="para">
<charlist>
<textbrk startln="1" endl n="1">
</charlist>
</e-i-c>

<e-i-c gi ="enphasis">
<charlist inherit="1">

</charlist>
</e-i-c>

<e-i-c gi ="enphasi s" context="enphasi s">
<charlist inherit="1">

</charlist>
</e-i-c>

DSSSL stylesheet

DSSSL stylesheets are written in a Scheme-like language (see “Scheme” later in this chapter). It is the el erment
function that controls the presentation of individual elements. See the example in Example 4.2.

Thisis an alpha version of this book. 56

Publishing DocBook Documents

Example 4.2. A Fragment of a DSSSL Stylesheet

(el emrent para
(make paragraph
(process-children)))

(el enent enphasis
(make sequence
font-posture: 'italic
(process-children)))

(el emrent (enphasi s enphasi s)
(make sequence
font-posture: 'upright
(process-children)))

CSS stylesheet

CSS stylesheets consist of selectors and formatting properties, as shown in Example 4.3.

Example 4.3. A Fragment of a CSS Stylesheet

para { display: block }

enphasi s { display: inline;
font-style: italic; }

enphasi s enphasis { display: inline
font-style: upright; }

XSL stylesheet

XSL stylesheets are XML documents, as shown in Example 4.4. The element in the XSL stylesheet that controls the
presentation of specific elementsisthexsl : t enpl at e element.

Example 4.4. A Fragment of an XSL Stylesheset

<?xm version="1.0"?>
<xsl : styl esheet xm ns:xsl="http://ww.w3. org/ XSL/ Transforni 1. 0"
xm ns: fo="http://ww.w3. org/ XSL/ For mat/ 1. 0" >

<xsl :tenpl ate match="para">
<f o: bl ock>
<xsl : appl y-tenpl ates/ >
</ fo: bl ock>
</ xsl:tenpl ate>

<xsl :tenpl ate mat ch="enphasi s" >
<f o: sequence font-style="italic">
<xsl : appl y-tenpl at es/ >
</ f o: sequence>
</ xsl:tenpl ate>

<xsl :tenpl at e mat ch="enphasi s/ enphasi s" >
<f o: sequence font-styl e="upright">
<xsl : appl y-tenpl at es/ >
</ f o: sequence>
</ xsl:tenpl at e>

</ xsl : styl esheet >

Thisis an alpha version of this book. 57

Publishing DocBook Documents

Using Jade and DSSSL to Publish DocBook Documents

Jade is afree tool that applies[DSSSO™ stylesheets to SGML and XML documents. As distributed, Jade can output
RTF, TeX, MIF, and SGML. The SGML backend can be used for SGML to SGML transformations (for example,
DocBook to HTML).

A complete set of DSSSL stylesheetsfor creating print and HTML output from DocBook isincluded on the CD-ROM.
More information about obtaining and installing Jade appears in Appendix A.

A Brief Introduction to DSSSL

DSSSL isastylesheet language for both print and online rendering. The acronym stands for Document Style Semantics
and Specification Language. It is defined by 1SO/IEC 10179:1996. For more general information about DSSSL, see

he DSSSL Pagd” .

Scheme

The DSSSL expression language is Scheme, a variant of Lisp. Lisp isafunctional programming language with are-
markably regular syntax. Every expression looks like this:

(operator [argl] [arg2] ... [argn])
Thisiscalled “prefix” syntax because the operator comes before its arguments.

In Scheme, the expression that subtracts 2 from 3,is(- 3 2).And(+ (- 3 2) (* 2 4)) is9. Whilethe
prefix syntax and the parentheses may take a bit of getting used to, Scheme is not hard to learn, in part because there
are no exceptions to the syntax.

DSSSL Stylesheets

A complete DSSSL stylesheet is shown in Example 4.9. After only abrief examination of the stylesheet, you'll probably
begin to have afeel for how it works. For each element in the document, there is an element rule that describes how
you should format that element. The goal of the rest of this chapter isto make it possible for you to read, understand,
and even write stylesheets at thislevel of complexity.

Example 4.5. A Complete DSSSL Stylesheet

<! DOCTYPE styl e-sheet PUBLIC "-//Janes C ark//DTD DSSSL Styl e Sheet//EN'>

<styl e-sheet >
<styl e-specification>
<styl e-speci fication-body>

(el ement chapter
(make sinpl e- page- sequence

top-margin: 1lin

bottom margin: 1lin
left-margin: 1lin
right-margin: 1lin
font-size: 12pt

i ne-spaci ng: 14pt

Vilttp:/www.j clark.com/dsssl/
VWhttp://ww.jclark.com/dsssl/

Thisis an alpha version of this book. 58

http://www.jclark.com/dsssl/
http://www.jclark.com/dsssl/

Publishing DocBook Documents

m n-1 eadi ng: Opt
(process-children)))

(element title
(make paragraph
font-weight: 'bold
font-size: 18pt
(process-children)))

(el emrent para
(make paragraph
space- before: 8pt
(process-children)))

(el erent enphasi s
(if (equal? (attribute-string "role") "strong")
(make sequence
font-weight: 'bold
(process-children))
(make sequence
font-posture: 'italic
(process-children))))

(el ement (enphasi s enphasi s)
(make sequence
font-posture: 'upright
(process-children)))

(define (super-sub-script plus-or-mnus
#! opti onal (sosofo (process-children)))
(make sequence
font-size: (* (inherited-font-size) 0.8)
position-point-shift: (plus-or-mnus (* (inherited-font-size) 0.4))
sosof 0))

(el ement superscript (super-sub-script +))
(el ement subscript (super-sub-script -))

</ styl e-speci fication-body>
</ styl e-specification>
</ styl e- sheet >

This stylesheet is capable of formatting simple DocBook documents like the one shown in Example 4.6.

Example 4.6. A Simple DocBook Document

<! DOCTYPE chapter PUBLIC "-//QOASI S//DTD Docbook XM. V4.1.2//EN'
"http://ww. oasi s-open. or g/ docbook/ xm / 4. 1. 2/ docbookx. dt d" >

<chapter><title>Test Chapter</title>

<par a>

This is a paragraph in the test chapter. It is unremarkable in

every regard. This is a paragraph in the test chapter. It is

unremar kabl e in every regard. This is a paragraph in the test

chapter. It is unremarkable in every regard.

</ par a>

<par a>

<enphasi s rol e="bol d">Thi s</ enphasi s> par agraph contai ns

<enphasi s>sone <enphasi s>enphasi zed</ enphasi s> t ext </ enphasi s>

and a <superscri pt >super </ superscri pt>scri pt

Thisis an alpha version of this book.

59

Publishing DocBook Documents

and a <subscri pt >sub</ subscri pt>scri pt.

</ par a>

<par a>

This is a paragraph in the test chapter. It is unremarkable in
every regard. This is a paragraph in the test chapter. It is
unremar kabl e in every regard. This is a paragraph in the test
chapter. It is unremarkable in every regard.

</ par a>

</ chapt er >

The result of formatting a simple document with this stylesheet can be seen in Eigure 4.1.

Figure4.1. The formatted ssmple document

TEST CHAPTER

This 1s a paragraph in the test chapter. It is unrem
paragraph in the test chapter. It i1s unremarkable 1n e

the test chapter. It is unremarkable in every regard.
This paragraph contains some emphasized text and a

This 1s a paragraph in the test chapter. It is unrem
paragraph in the test chapter. It is unremarkable 1n ¢

the test chapter. It is unremarkable in every regard.

WE'I take a closer ook at this stylesheet after you've learned alittle more DSSSL.

Thisis an alpha version of this book. 60

Publishing DocBook Documents

DSSSL Stylesheets Are SGML Documents

One of the first things that may strike you about DSSSL stylesheets (aside from all the parentheses), is the fact that
the stylesheet itself isan SGML document! This means that you have all the power of SGML documents at your dis-
posal in DSSSL stylesheets. In particular, you can use entities and marked sections to build a modular stylesheet.

In fact, DSSSL stylesheets are defined so that they correspond to a particular architecture. This means that you can
change the DTD used by stylesheets within the bounds of the architecture. A complete discussion of document archi-
tectures is beyond the scope of this book, but we'll show you one way to take advantage of them in your DSSSL
stylesheets in fhe section called “ The DSSSL Architecture’l* later in the chapter.

DSSSL Processing Model

A DSSSL processor builds atree out of the source document. Each element in the source document becomes a node
in the tree (processing instructions and other constructs become nodes as well). Processing the source tree begins with
the root rule and continues until there are no more nodes to process.

Global Variables and Side Effects

There aren't any global variables or side effects. It can be difficult to come to grips with this, especidly if you're just
starting out.

It is possible to define constants and functiong and to create local variables with , but you can't create
any global variables or change anything after you've defined it.

DSSSL Expressions

DSSSL hasarich vocabulary of expressionsfor dealing with all of theintricacies of formatting. Many, but by no means
al of them, are supported by Jade. In this introduction, we'll cover only afew of the most common.

Element expressions

Element expressions, which define the rules for formatting particular el ements, make up the bulk of most DSSSL
stylesheets. A simple element rule can be seen in Example 4.7. This rule says that a par a element should be
formatted by making a paragraph (see fhe section called “Make expressions]*).

Example4.7. A Simple DSSSL Rule

(el emrent para
(make paragraph
space- before: 8pt
(process-children)))

An element expression can be made more specific by specifying an element and its ancestorsinstead of just specifying
anelement. Therule (el emrent title ...) appliestoal Ti t| e elements, but arule that begins (el ermrent
(figure title) ...) appliesonlytoTit| e elementsthat areimmediate children of Fi gur e elements.

If several rules apply, the most specific ruleis used.

When aruleis used, the node in the source tree that was matched becomes the “current node” while that el ement ex-
pression is being processed.

Thisis an alpha version of this book. 61

Publishing DocBook Documents

Make expressions

A make expression specifies the characteristics of a“flow object.” Flow objects are abstract representations of content
(paragraphs, rules, tables, and so on). The expression:

(make paragraph

font-size: 12pt

I i ne-spacing: 14pt ...)
specifies that the content that goes “here” is to be placed into a paragraph flow object with afont-size of 12pt and a
line-spacing of 14pt (all of the unspecified characteristics of the flow object are defaulted in the appropriate way).

They're called flow objectsbecause DSSSL, initsfull generality, allowsyou to specify the characteristics of aseguence
of flow objects and a set of areas on the physical page where you can place content. The content of the flow objectsis
then “poured on to” (or flowsin to) the areas on the page(s).

In most cases, it's sufficient to think of the make expressions as constructing the flow objects, but they really only
specify the characteristics of the flow objects. Thisdetail isapparent in one of the most common and initially confusing
pieces of DSSSL jargon: the sosofo. Sosofo stands for a* specification of a sequence of flow objects.” All this means
is that processing a document may result in a nested set of make expressions (in other words, the paragraph may
contain atable that contains rows that contain cells that contain paragraphs, and so on).

The general form of anake expressionis:

(make fl ow obj ect-nane
keywor dl: val uel
keywor d2: val ue2

keywor dn: val uen
(cont ent - expressi on))

Keyword arguments specify the characteristics of the flow object. The specific characteristics you use depends on the
flow object. The cont ent - expr essi on can vary; it is usually another make expression or one of the processind

Expressions:
Some common flow objects in the print stylesheet are:
si mpl e- page- sequence

Contains a sequence of pages. The keyword arguments of this flow object let you specify margins, headers and
footers, and other page-related characteristics. Print stylesheets should always produce one or more si npl e-
page- sequence flow objects.

Nesting si mpl e- page- sequence does not work. Characteristics on the inner sequences are ignored.
par agr aph

A paragraph is used for any block of text. This may include not only paragraphs in the source document, but also
titles, the termsin a definition list, glossary entries, and so on. Paragraphsin DSSSL can be nested.

sequence

A sequenceis awrapper. It ismost frequently used to change inherited characteristics (like font style) of a set of
flow objects without introducing other semantics (such as line breaks).

score

Thisis an alpha version of this book. 62

Publishing DocBook Documents

A score flow object creates underlining, strike-throughs, or overlining.
tabl e

A table flow object creates atable of rows and cells.
The HTML stylesheet uses the SGML backend, which has adifferent selection of flow objects.
el emrent

Creates an element. The content of thismak e expression will appear between the start and end tags. The expression:

(make el enent gi: "HL"
(literal "Title"))

produces <H1>Ti t | e</ H1>.
enpt y- el enent

Creates an empty element that may not have content. The expression:

(make empty-el enment gi: "BR'
attributes: ' (("CLEAR' "ALL")))

produces<BR CLEAR="ALL" >.
sequence

Produces no output in of itself as awrapper, but is still required in DSSSL contexts in which you want to output
several flow objects but only one object top-level object may be returned.

entity-ref

Inserts an entity reference. The expression:

(make entity-ref name: "nbsp")
produces .

In both stylesheets, a completely empty flow object is constructed with (enpt y- sosof o) .

Selecting data
Extracting parts of the source document can be accomplished with these functions:
(data nd)
Returns al of the character datafrom nd as a string.
(attribute-string "attr" nd)
Returnsthe value of theat t r attribute of nd.

(inherited-attribute-string "attr" nd)

Thisis an alpha version of this book. 63

Publishing DocBook Documents

Returnsthe value of theat t r attribute of nd. If that attribute is not specified on nd, it searches up the hierarchy
for the first ancestor element that does set the attribute, and returnsits value.

Selecting elements
A common requirement of formatting is the ability to reorder content. In order to do this, you must be able to select
other elements in the tree for processing. DSSSL provides a number of functions that select other elements. These
functions al return alist of nodes.
(current-node)
Returns the current node.
(children nd)
Returns the children of nd.
(descendant s nd)
Returns the descendants of nd (the children of nd and all their children's children, and so on).
(parent nd)
Returns the parent of nd.
(ancestor "nane" nd)
Returns the first ancestor of nd named nane.
(element-with-id "id")
Returns the element in the document with the ID i d, if such an element exists.

(sel ect-el enents node-list "name")

Returns all of the elements of thenode- | i st that have the name nane. For example, (sel ect - el enent s
(descendants (current-node)) "para") returnsalist of all the paragraphs that are descendants of
the current node.

(enpty-node-1list)

Returns a node list that contains no nodes.
Other functions allow you to manipulate node lists.
(node-list-empty? nl)

Returnstrueif (and only if) nl isan empty node list.
(node-list-length nl)

Returns the number of nodesinnl .
(node-list-first nl)

Returns anode list that consists of the single node that isthe first nodeinnl .

Thisis an alpha version of this book. 64

Publishing DocBook Documents

(node-list-rest nl)
Returns anode list that contains al of the nodesin nl except the first node.

There are many other expressions for manipulating nodes and node lists.

Processing expressions

Processing expressions control which elements in the document will be processed and in what order. Processing an
element is performed by finding a matching element rule and using that rule.

(process-chil dren)

Processes all of the children of the current node. In most cases, if no process expression is given, processing the
children is the default behavior.

(process-node-1list nl)

Processes each of the elementsinnl .

Define expressions

Y ou can declare your own functions and constantsin DSSSL. The general form of afunction declaration is:

(define (function args)
functi on- body)
A constant declaration is:

(define constant
const ant - f uncti on- body)

The distinction between constants and functionsis that the body of a constant is eval uated when the definition occurs,
while functions are eval uated when they are used.

Conditionals

In DSSSL, the constant #t represents true and #f false. There are several ways to test conditions and take action in
DSSSL.

i f

Theformof ani f expressionis:

(if condition
t rue- expression
f al se- expressi on)

If theconditionistrue, thet r ue- expr essi on isevaluated, otherwisethef al se- expr essi on isevaluated.
Y ou must always provide an expression to be evaulated when the condition is not met. If you want to produce
nothing, use (enpt y- sosof o) .

case

case selectsfrom among severa alternatives:

Thisis an alpha version of this book. 65

Publishing DocBook Documents

(case expression
((constant1l) (expressionl)
((constant2) (expression2)
((constant 3) (expression3l)
(el se el se-expression))

The value of the expression is compared against each of the constants in turn and the expression associated with
the first matching constant is evaul ated.

cond

cond also selects from among severa alternatives, but the selection is performed by evaluating each expression:

(cond
((conditionl) (expressionl)
((condition2) (expression2)
((condition3) (expression3)
(el se el se-expression))

The value of each conditional is calculated in turn. The expression associated with the first condition that is true
is evaluated.

Any expression that returns#f isfalse; all other expressions aretrue. This can be somewhat counterintuitive. In many
programming languages, it's common to assume that “empty” things are false (0 is false, a null pointer is fase, an
empty set isfalse, for example.) In DSSSL, thisisn't the case; note, for example, that an empty nodelist is not #f and
istherefore true. To avoid these difficulties, always use functions that return true or false in conditionals. To test for
an empty nodelist, use (node- | i st-enpty?).

Let expressions

The way to create local variablesin DSSSL iswith (| et) . The general form of al et expressionis:

(let ((varl expressionl)
(var 2 expression2)

(varn expressionn))
| et - body)

Inal et ; expression, all of the variables are defined “simultaneously.” The expression that defines var 2 cannot
contain any referencesto any other variables defined inthe samel et expression. Al et * expression alowsvariables
to refer to each other, but runs slightly slower.

Variables are available only within thel et - body. A common use of | et iswithinadef i ne expression:

(define (cals-rul e-default nd)
(let* ((table (ancestor "table" nd))
(franme (if (attribute-string "frame" table)
(attribute-string "frame" table)

"all")))

(equal ? frame "all")))

Thisfunction createstwo local variablest abl e andf r ane. | et returnsthe value of the last expression in the body,
so thisfunction returnstrue if the f r ane attribute onthetableis al | orif nof r anme attributeis present.

Thisis an alpha version of this book. 66

Publishing DocBook Documents

Loops

DSSSL doesn't have any construct that resembles the “for loop” that occurs in most imperative languages like C and
Java. Instead, DSSSL employs a common trick in functional languages for implementing aloop: tail recursion.

Loopsin DSSSL use aspecia form of | et . Thisloop countsfrom 1 to 10:

(I et “| oopvar E((count 1))
(if (> count 10)

0.

(%= oopvar ﬂ(+ count 1))))

“This variable controls the loop. It is declared without an initial value, immediately after thel et operand.

EA ny number of additional local variables can be defined after the loop variable, just asthey canin any other | et
expression.

E’If you ever want the loop to end, you have to put some sort of atestinit.

ﬂThi sisthe value that will be returned.

ENote that you iterate the loop by using the loop variable asiif it was a function name.

6

¥
The argumentsto this“function” are the values that you want the local variables declared in to havein the
next iteration.

A Closer Look at Example 4.5

is a style sheet that contains a style specification. Stylesheets may consist of multiple specifications, as
we'll see in the section called “A Single Stylesheet for Both Print and HTML'].“

The actual DSSSL code goes in the style specification body, within the style specification. Each construction rule
processes different elements from the source document.

Processing chapters

Chapt er s are processed by the chapt er construction rule. Each Chapt er is formatted as a si npl e- page-
sequence. Every print stylesheet should format a document as one or more simple page sequences. Characteristics
on the simple page sequence can specify headers and footers as well as margins and other page parameters.

Oneimportant note about simple page sequences: they cannot nest. This meansthat you cannot blindly processdivisions
(Part s, Ref er ence) and the elements they contain (Chapt er s, Ref Ent r ys) as simple page sequences. This
sometimes involves alittle creativity.

Processing titles

The make expressionintheti t | e element rule ensuresthat Ti t | esare formatted in large, bold print.

Thisis an alpha version of this book. 67

Publishing DocBook Documents

This construction rule applies equally to Chapt er titles, Fi gur e titles, and Book titles. It'sunlikely that you'd want
al of thesetitlesto be presented in the same way, so amore robust stylesheet would have to arrange the processing of
titleswith more context. This might be achieved in theway that nested Enphasi s elementsare handledin
Ealled “Processing emphasisT’.

Processing paragraphs

Par a elements are simply formatted as paragraphs.

Processing emphasis

Processing Enphasi s elements is made alittle more interesting because we want to consider an attribute value and
the possibility that Enphasi s elements can be nested.

In the simple case, in which we're processing an Enphasi s element that is not nested, we begin by testing the value
of ther ol e attribute. If the content of that attribute is the string st r ong, it is formatted in bold; otherwise, it is
formatted in itaic.

Thenested caseishandled by the (enphasi s enphasi s) rule. Thisrule simply formatsthe content using an upright
(nonitalic) font. This rule, like the rule for Ti t | es, is not robust. Enphasi s nested inside st r ong Enphasi s
won't be distinguished, for example, and nestings more than two elements deep will be handled just as nestings that
are two deep.

Processing subscripts and superscripts

Processing Subscri pt and Super scri pt elements is really handled by the super - sub- scri pt function.
There are several interesting things about this function:

The pl us- or - m nus argument

Y ou might ordinarily think of passing akeyword or boolean argument to the super - sub- scri pt functionto
indicate whether subscripts or superscripts are desired. But with Scheme, it's possible to pass the actual function
as an argument!

Note that in the element construction rulesfor Super scri pt and Subscri pt, we passthe actual functions +
and - . In the body of super - sub- scri pt, we use the pl us- or - m nus argument as a function name (it
appears immediately after an open parenthesis).

The optional argument

opt i onal arguments are indicated by #! opt i onal in the function declaration. Any number of opt i onal
arguments may be given, but each must specify a default value. This is accomplished by listing each argument
and default value (an expression) as a pair.

Insuper - sub-scri pt, the optional argument sosof o isinitialized to pr ocess- chi | dr en. This means
that at the point where the function is called, pr ocess- chi | dr en is evaluated and the resulting sosof o is
passed to the function.

Use of inherited characteristics

Itispossibleto usethe“current” value of aninherited characteristic to cal culate anew value. Using thistechnique,
superscripts and subscripts will be presented at 80 percent of the current font size.

Thisis an alpha version of this book. 68

Publishing DocBook Documents

Customizing the Stylesheets

The best way to customize the stylesheetsisto write your own “driver” file; thisisastylesheet that contains your local
modifications and then includes the appropriate stylesheet from the standard distribution by reference. Thisalowsyou
to makelocal changes and extensionswithout modifying the distributed files, which makes upgrading to the next release
much simpler.

Writing Your Own Driver

A basic driver filelookslike this:

<! DOCTYPE styl e-sheet PUBLIC "-//Janes C ark//DTD DSSSL Style Sheet//EN' [
<IENTITY dbstyl e PUBLI C "-// Nor man Wl sh// DOCUMENT DocBook Print Styl esheet//EN' CDATA DSSSL>
1>

<styl e-sheet >

<styl e-specificati on use="dochook" >

<styl e-speci ficati on-body>

;; your changes go here...

</ styl e-speci fication-body>

</ styl e-specification>

<external -speci fication i d="docbook" docunent="dbstyle">

</ styl e-sheet >

There are two public identifiers associated with the Modular DocBook Stylesheets:

* -//Norman Wal sh// DOCUMENT DocBook Print Styl esheet//EN

e -//Norman Wl sh// DOCUMENT DocBook HTM. Styl esheet//EN
The former selects the print stylesheet and the latter selects the HTML stylesheet. There is an SGML Open catalog
filein the distribution that maps these public identifiersto the stylesheet files.

Y ou can add your own definitions, or redefinitions, of stylesheet rules and parameters so that

;; your changes go here..
occurs in the previous example.

For aconcrete example of adriver file, seepl ai n. dsl inthedocbook/ pri nt directory inthe stylesheet distribution
(or on the CD-ROM). Thisis a customization of the print stylesheet, which turns off title page and TOC generation.

Changing the Localization

As distributed, the stylesheets use English for all generated text, but other localization files are also provided. At the
time of thiswriting, the stylesheets support Catalan, Czech, Danish, Dutch, English, Finnish, French, German, Greek,
Italian, Japanese, Norwegian, Polish, Portuguese, Portuguese (Brazil), Romanian, Russian, Slovak, Spanish, and
Swedish. (If you can write alocalization for another language, please contribute it.)

There are two ways to switch languages: by specifying al ang attribute, or by changing the default language in a
customization.

Thisis an alpha version of this book. 69

Publishing DocBook Documents

Using the | ang attribute

One of the DocBook common attributesis | ang. If you specify alanguage, the DocBook stylesheets will use that
language (and all its descendants, if no other language is specified) for generated text within that element.

summarizes the language codes for the supported Ianguag&c.15 The following chapter uses text generated
in French:

<chapter lang="fr"><title>Bétises</title>
<para>Pierre qui roule n'anmasse pas de nousse. </ para>
</ chapt er >

Table 4.1. DocBook Stylesheet L anguage Codes

Language Code Language
da Danish

de German
en English

es Spanish

fi Finnish

fr French

it [talian

nl Dutch

no Norwegian
pl Polish

pt Portuguese
ru Russian
SV Swedish

Changing the default language
If nol ang attribute is specified, the default language is used. Y ou can change the default language with afrivel.

In the driver, define the default language. summarizes the language codes for the supported languages. The
following driver makes German the default language:

<! DOCTYPE styl e-sheet PUBLIC "-//Janes C ark//DTD DSSSL Styl e Sheet//EN' [
<IENTITY dbstyl e PUBLI C "-// Nor man Wl sh// DOCUMENT DocBook Print Styl esheet//EN' CDATA DSSSL>
1>

<styl e-sheet >
<styl e-specificati on use="dochook" >
<styl e-speci ficati on-body>

(define %lefaul t-1 anguage% "dege")

</ styl e-speci fication-body>
15 Language codes should conform to IETF RFC 3066.

Thisis an alpha version of this book. 70

Publishing DocBook Documents

</ styl e-specification>
<ext ernal - speci fication id="docbook" docunent="dbstyle">
</ styl e- sheet >

There are two other settings that can be changed only in adriver. Both of these settings are turned off in the distributed
stylesheet:

%gent ext - | anguage%

If alanguage code is specified in ¥gent ext - | anguage% then that language will be used for all generated
text, regardless of any | ang attribute settings in the document.

%gent ext - use- xr ef - | anguage%

If turned on (defined as#t), then the stylesheets will generate the text associated with a cross reference using the
language of the target, not the current language. Consider the following book:

<book><titl e>A Test Book</title>

<pr ef ace>

<para>There are three chapters in this book: <xref |inkend=cl1>
<xref |inkend=c2> and <xref |inkend=c3>

</ para>

</ preface>

<chapter |ang=usen><title>English</title> ... </chapter>
<chapter lang=fr><title>French</title> ... </chapter>
<chapter |ang=dege><title>Deutsch</title> ... </chapter>
</ book>

The standard stylesheets render the Preface as something like this:
There are three chapters in this book: Chapter 1, Chapter 2, and Chapter 3.
With Ygent ext - use- xr ef - | anguage%turned on, it would render like this:

There are are three chaptersin this book: Chapter 1, Chapitre 2, and Kapitel 3.

A Single Stylesheet for Both Print and HTML

A DSSSL stylesheet consists of one or more“ style specifications.” Using more than one style specification allows you
to build asingle stylesheet file that can format with either the print or SGML backends. shows astylesheet
with two style specifications.

Example 4.8. both.ddl: A Stylesheet with Two Style Specifications

<! DOCTYPE styl e-sheet PUBLIC "-//Janmes Cl ark//DTD DSSSL Style Sheet//EN' [
<IENTITY html -ss

PUBLI C "-//Nornman Wl sh// DOCUMENT DocBook HTM. Styl esheet//EN' CDATA dsssl >
<IENTITY print-ss

PUBLI C "-//Nornman Wl sh// DOCUMENT DocBook Print Styl esheet//EN' CDATA dsssl >
1>
<styl e-sheet >
<style-specification id="print" use="print-stylesheet">
<styl e-specificati on-body>

;; custom ze the print styl esheet

Thisis an alpha version of this book. 71

Publishing DocBook Documents

</ styl e-speci fication-body>

</ styl e-specification>

<style-specification id="htm" use="htnl -styl esheet">

<styl e-speci fication-body>

;; custom ze the htm styl esheet

</ styl e-speci fication-body>

</ styl e-specification>

<ext ernal -specification id="print-styl esheet” document="print-ss">

<ext ernal -specification id="htm -styl esheet” document="htm -ss">
</ styl e- sheet >

Once you have stylesheets with more than one style specification, you have to be able to indicate which style specific-
ation you want to use. In Jade, you indicate thisby providing the ID of the style specification after the stylesheet filename,
separated with a hash mark: #.

Using the code from Example 4.§, you can format a document using the print stylesheet by running:

jade -t rtf -d both.dsl#print file.sgm

and using the HTML stylesheet by running:
jade -t sgm -d both.dsl#htnml file.sgm

Dealing with Multiple Declarations

The DocBook SGML DTD and the DocBook DSSSL Stylesheets happen to use the same SGML declaration. This
makes it very easy to run Jade with DocBook. However, you may sometimes wish to use Jade with other document
types, for example the DocBook XML DTD, which has a different declaration. There are a couple of waysto do this.

Pass the Declaration Explicitly

If your stylesheets parse fine with the default declaration, but you want to use an alternate declaration with a particular
document, just pass the declaration on the command line:

jade options the-declaration the-docunent
Note that there's no option required before the declaration; it simply occurs before the first filename. Jade concatenates
all of thefilesthat you give it together, and parses them as if they were one document.

Use the Catalogs
The other way to fix thisiswith alittle catalog trickery.

First, note that Jade awayslooksin thefile caled cat al og in the same directory as the document that it is loading,
and uses settings in that file in preference to settings in other catalogs.

With this fact, we can employ the following trick:

» Putacat al og filein the directory that contains your stylesheets, which contain an SGVLDECL directive. Jade
understands the directive, which pointsto the SGML declaration that you should use when parsing the stylesheets.
For the DocBook stylesheets, the DocBook declaration works fine.

Thisis an alpha version of this book. 72

Publishing DocBook Documents

» Inthedirectory that containsthe document you want to process, createacat al og filethat containsan SGVL DECL
directive that points to the SGML declaration that should be used when parsing the document.

There'sno easy way to have both the stylesheet and the document in the same directory if they must be processed with
different declarations. But thisis usually not too inconvenient.

The DSSSL Architecture

The concept of an architecture was promoted by HyTime. In some ways, it takes the standard SGML/XML notions of
therole of elements and attributes and inverts them. Instead of relying on the name of an element to assign its primary
semantics, it uses the values of asmall set of fixed attributes.

While this may be counterintuitive initially, it has an interesting benefit. An architecture-aware processor can work
transparently with many different DTDs. A small example will help illustrate this point.

Note

The following example demonstrates the concept behind architectures, but for the sake of simplicity, it does
not properly implement an architecture as defined in HyTime.

Imagine that you wrote an application that can read an SGML/XML document containing aletter (conforming to some
letter DTD), and automatically print an envelope for the letter. It's easy to envision how this works. The application
reads the content of the letter, extracts the address and return address elements from the source, and uses them to gen-
erate an envelope:

<?xm version='1.0">

<! DOCTYPE |l etter "/share/sgm/letter/letter.dtd" [
<IENTITY nyaddress "/share/sgn/entities/nyaddress.xm">
1>

<letter>

<r et ur naddr ess>&nyaddr ess; </ r et ur naddr ess>

<addr ess>

<nane>Leonard Muiel | ner </ nane>

<conpany>0 Reil |y &anp; Associ at es</ conpany>

<street>90 Sherman Street</street>

<ci ty>Canbri dge</ ci t y><st at e>MA</ st at e><zi p>02140</ zi p>
</ addr ess>

<body>

<sal utation>H Lenny</sal utation>

;}body>
The processor extractsthe Ret ur naddr ess and Addr ess elements and their children and prints the envelope ac-
cordingly.

Now suppose that a colleague from payroll comes by and asks you to adapt the application to print envelopes for
mailing checks, using the information in the payroll database, which has a different DTD. And aweek later, someone
from sales comes by and asks if you can modify the application to use the contact information DTD. After awhile,
you would have 11 versions of this program to maintain.

Supposethat instead of using the actual element namesto locate the addressesin the documents, you asked each person
to add afew attributesto their DTD. By forcing the attributes to have fixed values, they'd automatically be present in
each document, but authors would never have to worry about them.

For example, the address part of the letter DTD might look like this:

Thisis an alpha version of this book. 73

Publishing DocBook Documents

<! ELEMENT address (name, conpany? street*, city, state, zip)>
<I ATTLI ST address

ADDRESS CDATA #FI XED " START"

>

<! ELEMENT nane (#PCDATA) *>
<! ATTLI ST name

ADDRESS CDATA #FI XED " NAME"
>

<! ELEMENT conpany (#PCDATA) *>
<I ATTLI ST conpany

ADDRESS CDATA #FI XED " COVPANY"
>

<! ELEMENT street (#PCDATA)*>
<I ATTLI ST street

ADDRESS CDATA #FI XED " STREET"
>

<! ELEMENT city (#PCDATA)*>
<IATTLIST city

ADDRESS CDATA #FI XED "Cl TY"
>

<! ELEMENT state (#PCDATA)*>
<I ATTLI ST state

ADDRESS CDATA #FI XED " STATE"
>

<! ELEMENT zip (#PCDATA)*>
<I ATTLI ST zip

ADDRESS CDATA #FI XED " ZI P"
>

Effectively, each addressin aletter would look like this:

<addr ess ADDRESS="START" >

<nane ADDRESS="NAME"'>Leonard Miel | ner </ name>

<conpany ADDRESS="COWPANY">O Reilly &anp; anp; Associ at es</ conpany>
<street > ADDRESS="STREET">90 Shernman Street</street>

<city ADDRESS="Cl TY">Canbri dge</ city><state ADDRESS="STATE"'>MA</ st at e>
<zi p ADDRESS="ZI P">02140</ zi p>

</ addr ess>

In practice, the author would not include the ADDRESS attributes, they are automatically provided by the DTD because
they are #FI XED.16

Now the address portion of the payroll DTD might look like this:
<! ELEMENT enpl oyee (nane, nmailingaddress)>

18 The use of uppercase names here isintentional. These are not attributes that an author is ever expected to type. In XML, which is case-sensitive,
using uppercase for things like this reduces the likelihood of collision with “real” attribute namesin the DTD.

Thisis an alpha version of this book. 74

Publishing DocBook Documents

<! ELEMENT nane (#PCDATA) *>
<! ATTLI ST name

ADDRESS CDATA #FI XED " NAME"
>

<! ELEMENT nai | i ngaddress (addrlinel, addrline2,
city, state.or.province,
<! ATTLI ST mai | i ngaddr ess
ADDRESS CDATA #FI XED " START"
>

<! ELEMENT addrlinel (#PCDATA)*>
<! ATTLI ST addrlinel

ADDRESS CDATA #FI XED " STREET"
>

<! ELEMENT addrline2 (#PCDATA)*>
<! ATTLI ST addrline2

ADDRESS CDATA #FI XED " STREET"
>

<! ELEMENT city (#PCDATA)*>
<IATTLIST city

ADDRESS CDATA #FI XED "Cl TY"
>

<! ELEMENT state. or. provi nce (#PCDATA)*>
<I ATTLI ST state. or. province

ADDRESS CDATA #FI XED " STATE"
>

<! ELEMENT post code (#PCDATA) *>
<! ATTLI ST post code

ADDRESS CDATA #FI XED " ZI P"

>

The employee records will look like this:

post code) >

<enpl oyee><nane ADDRESS="NAME'>Leonard Muiel | ner </ name>

<mai | i ngaddr ess ADDRESS=" START" >

<addrl i nel ADDRESS="STREET">90 Sherman Street</addrlinel>

<city ADDRESS="Cl TY">Canbri dge</city>

<state.or.provi nce ADDRESS="STATE">MA</ st at e. or. provi nce>

<post code ADDRESS="ZI P">02140</ post code>
</ mai | i ngaddr ess>
</ enpl oyee>

Y our application no longer cares about the actual el ement names. It simply looks for the elements with the correct at-
tributes and usesthem. Thisisthe power of an architecture: it providesalevel of abstraction that processing applications
can useto their advantage. In practice, architectural formsare abit more complex to set up because they havefacilities

for dealing with attribute name conflicts, among other things.

Why have we told you all this? Because DSSSL is an architecture. This means you can modify the stylesheet DTD

and still run your stylesheets through Jade.

Thisis an alpha version of this book.

Publishing DocBook Documents

Consider the case presented earlier in Example 4.9. In order to use this stylesheet, you must specify three things: the
backend you want to use, the stylesheet you want to use, and the style specification you want to use. If you mismatch
any of the parameters, you'll get the wrong results. In practice, the problem is compounded further:

» Some stylesheets support severa backends (RTF, TeX, and SGML).
» Some stylesheets support only some backends (RTF and SGML, but not TeX or MIF).

» Some stylesheets support multiple outputs using the same backend (several kinds of HTML output, for example,
using the SGML backend: HTML, HTMLHelp, JavaHelp, and so on).

» If you have complex stylesheets, some backends may require additional options to define parameter entities or
stylesheet options.

None of this complexity isrealy necessary, after all, the options don't change—you just have to use the correct com-
binations. The mental model is really something like this: “1 want a certain kind of output, TeX say, so | have to use
this combination of parameters.”

Y ou can summarize thisinformation in a table to help keep track of it:

Desired Output Backend Style specification Options Supported?
rtf rtf print -V rtf-backend yes

tex tex print -V tex-backend -i tex yes

html sgml htmlweb -i html yes
javahelp sgml help -i help yes
htmlhelp no

Putting this information in atable will help you keep track of it, but it's not the best solution. The ideal solution isto
keep this information on your system, and let the software figure it all out. You'd like to be able to run a command,
tell it what output you want from what styleshest, what file you want to process, and then let it figure everything else
out. For example:

format htm mybook. dsl mydoc. sgm

One way to do thisisto put the configuration datain a separate file, and have the format command load it out of this
other file. The disadvantage of thissolutionisthat it introduces another filethat you have to maintain and it'sindependent
from the stylesheet so it isn't easy to keep it up-to-date.

Inthe DSSSL case, a better aternative isto modify the stylesheet DTD so you can store the configuration datain the
stylesheet. Using this alternate DTD, your nybook. dsl stylesheets might look like this:

<! DOCTYPE styl e- sheet
PUBLI C "-// Nornman Wal sh//DTD Annotated DSSSL Styl e Sheet V1.2//EN' [

<!-- perhaps additional declarations here -->

1>

<styl e-sheet >

<title>DocBook Stylesheet</title>

<doct ype pubi d="-//QASI S// DTD DocBook V3. 1//EN'>

<doct ype pubi d="-//Davenport//DTD DocBook V3.0//EN'>

<doct ype pubi d="-//Norrman Wal sh//DTD Wbsite V1.4//EN'>

<backend name="rtf" backend="rtf" fragid="print"
options="-V rtf-backend" default="true">

<backend name="tex" backend="tex" fragid="print"

Thisis an alpha version of this book. 76

Publishing DocBook Documents

options="-V tex-backend -i tex">
<backend name="htm " backend="sgm " fragi d="htnm web" options="-i htm ">
<backend name="j avahel p" backend="sgm " fragi d="hel p" options="-i hel p">

<backend name="htnl hel p" supported="no">
<style-specification id="print" use="docbhook">
<styl e-speci fication-body>

In this example, the stylesheet has been annotated with atitle, alist of the public IDs to which it is applicable, and a
table that provides information about the output formats that it supports.

Using this information, the format command can get all the information it needs to construct the appropriate call to
Jade. To make HTML from nyf i | e. sgm format would run the following:
jade -t sgm -d nybook. dsl#htm web -i htm nyfile.sgm

The additional information, titles and public IDs, can be used as part of a GUI interface to simplify the selection of
stylesheets for an author.

The compl ete annotated stylesheet DTD, and an exampl e of theformat command script, are provided on the CD-ROM.

A Brief Introduction to XSL

Bab Stayton
Copyright © 2000 Bob Stayton

Using XSL tools to publish DocBook documents

Thereisagrowing list of tools to process DocBook documents using XSL stylesheets. Each tool implements parts or
all of the XSL standard, which actually has several components:

Extensible Stylesheet Language (XSL)

A language for expressing stylesheets written in XML. It includes the formatting object language, but refers to
separate documents for the transformation language and the path language.

XSL Transformation (XSLT)

The part of XSL for transforming XML documentsinto other XML documents, HTML, or text. It can be used to
rearrange the content and generate new content.

XML Path Language (XPath)

A language for addressing parts of an XML document. It is used to find the parts of your document to apply dif-
ferent stylesto. All XSL processors use this component.

To publish HTML from your XML documents, you just need an XSLT engine. To get to print, you need an XSLT
engineto produce formatting objects (FO), which then must be processed with aformatting object processor to produce
PostScript or PDF output.

James Clark's XT was the first useful XSLT engine, and it isstill in wide use. It iswritten in Java, so it runs on many
platforms, and it is free (http://www.jclark.con). X T comes with James Clark's nonvalidating parser XP, but you can
substitute adifferent Javaparser. Hereisasimple example of using XT from the Unix command lineto produce HTML :

Thisis an alpha version of this book. 77

http://www.jclark.com

Publishing DocBook Documents

You'll need to alter your CLASSPATH environment variable to include the path to whereyou put the. j ar filesfrom
the XT distribution.

CLASSPATH=xt . j ar: xp.jar:sax.jar
export CLASSPATH
java comjclark.xsl.sax.Driver filenane.xm docbook/htm /docbook. xsl > output. htni

If you replacethe HTML stylesheet with aformatting object stylesheet, X T will produce aformatting object file. Then
you can convert that to PDF using FOP, aformatting object processor available for free from the Apache XML Project
(http://xml.apache.ord). Here is an example of that two stage processing:

CLASSPATH=xt . jar:xp.jar:sax.jar:fop.jar

export CLASSPATH

java comjclark.xsl.sax.Driver filenane.xm docbook/fo/docbook.xsl > output.fo
java org. apache. f op. apps. ConmandLi ne out put.fo out put. pdf

As of thiswriting, some other XSLT processors to choose from include:

e 4XSLT, written in Python, from FourThought LL C (http://www.fourthought.cony)

» Sablotron, written in C++, from Ginger Alliance (http://www.gingerall.cor)

Saxon, written in Java, from Michael Kay (http://users.iclway.co.uk/mhkay/saxor])

« Xalan, written in Java, from the Apache XML Project (http://xml.apache.ord)

e XML::XSLT,written in Perl, from Geert Josten and Egon Willighagen (http://www.cpan.ord)

For print output, these additional tools are available for processing formatting objects:

« XEP (written in Java) from RenderX (http://www.renderx.conf).

e PassiveTeX from Sebastian Rahtz (http://users.ox.ac.uk/~rahtz/passivetexy).

A brief introduction to XSL

XSL isboth atransformation language and aformatting language. The XSL T transformation part |ets you scan through
a document's structure and rearrange its content any way you like. Y ou can write out the content using a different set
of XML tags, and generate text as needed. For example, you can scan through a document to locate all headings and
then insert a generated table of contents at the beginning of the document, at the same time writing out the content
marked up asHTML. XSL isalso arich formatting language, letting you apply typesetting controlsto all components
of your output. With a good formatting backend, it is capable of producing high quality printed pages.

An XSL stylesheet is written using XML syntax, and is itself a well-formed XML document. That makes the basic
syntax familiar, and enablesan XML processor to check for basic syntax errors. The stylesheet instructions use special
element names, which typically begin with xsl : to distinguish them from any XML tags you want to appear in the
output. The XSL namespace isidentified at the top of the stylesheet file. Aswith other XML, any XSL elements that
are not empty will require a closing tag. And some X SL elements have specific attributes that control their behavior.
It helpsto keep agood XSL reference book handy.

Here is an example of asimple XSL stylesheet applied to asimple XML file to generate HTML output.

Example 4.9. Smple XML file

<?xm version="1.0"7?>
<docunent >
<title>Using a nouse</title>

Thisis an alpha version of this book. 78

http://xml.apache.org
http://www.fourthought.com
http://www.gingerall.com
http://users.iclway.co.uk/mhkay/saxon
http://xml.apache.org
http://www.cpan.org
http://www.renderx.com
http://users.ox.ac.uk/~rahtz/passivetex/

Publishing DocBook Documents

<para>lt's easy to use a mpuse. Just roll it
around and click the buttons. </ para>
</ docunent >

Example 4.10. Smple XSL stylesheet

<?xm version="1.0"?>
<xsl : styl esheet

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Transf orm' versi on="1.0" >
<xsl :out put nethod="htm"/>

<xsl :tenpl ate mat ch="docunent" >
<HTML><HEAD><TI TLE>
<xsl :val ue-of select="./title"/>
</ TI TLE>
</ HEAD>
<BODY>
<xsl : appl y-tenpl ates/ >
</ BODY>
</ HTM.>
</ xsl:tenpl ate>

<xsl:tenplate match="title">
<H1><xsl : appl y-t enpl at es/ ></ H1>
</ xsl:tenpl ate>

<xsl :tenpl ate match="para">
<P><xsl : appl y-tenpl at es/ ></ P>
</ xsl:tenpl ate>

</ xsl : styl esheet >

Example4.11. HTML output

<HTM.>

<HEAD>

<TI TLE>Usi ng a nouse</ Tl TLE>

</ HEAD>

<BCDY>

<H1>Usi ng a nmouse</ Hl>

<P>It's easy to use a nouse. Just roll it
around and click the buttons. </ P>

</ BODY>

</ HTM.>

XSL processing model

XSL isatemplate language, not a procedural language. That means a stylesheet specifies a sample of the output, not
a sequence of programming steps to generateit. A stylesheet consists of a mixture of output samples with instructions
of what to put in each sample. Each bit of output sample and instructionsis called a template.

In general, you write a template for each element type in your document. That lets you concentrate on handling just
one element at atime, and keeps a stylesheet modular. The power of XSL comes from processing the templatesrecurs-
ively. That is, each template handles the processing of its own element, and then calls other templates to process its
children, and so on. Since an XML document is always a single root element at the top level that contains all of the
nested descendent elements, the X SL templ ates also start at the top and work their way down through the hierarchy of
elements.

Thisis an alpha version of this book. 79

Publishing DocBook Documents

Takethe DocBook <par a> paragraph element asan example. To convert thisto HTML, you want to wrap the paragraph
content with the HTML tags <p> and </ p>. But aDocBook <par a> can contain any number of in-line DocBook
elements marking up thetext. Fortunately, you can let other templatestake care of those elements, so your XSL template
for <par a> can be quite smple:

<xsl :tenpl ate match="para">
<p>
<xsl : appl y-tenpl ates/ >
</ p>
</ xsl:tenpl ate>

The<xsl : t enpl at e> element startsanew template, and itsrmat ch attribute indicates whereto apply the template,
in this case to any <par a> elements. The template says to output a litera <p> string and then execute the
<xsl : appl y-t enpl at es/ > instruction. This tells the XSL processor to look among al the templates in the
stylesheet for any that should be applied to the content of the paragraph. If each template in the stylesheet includes an
<xsl : appl y-t enpl at es/ > instruction, then all descendents will eventually be processed. When it is through
recursively applying templates to the paragraph content, it outputs the </ p> closing tag.

Context is important

Since you aren't writing a linear procedure to process your document, the context of where and how to apply each
modular templateisimportant. The mat ch attribute of <xsl : t enpl at e> providesthat context for most templates.
Thereisan entire expression language, X Path, for identifying what parts of your document should be handled by each
template. The simplest context is just an element name, as in the example above. But you can also specify elements
as children of other elements, elementswith certain attribute values, thefirst or last elementsin a sequence, and so on.
Hereis how the DocBook <f or mal par a> element is handled:

<xsl :tenpl ate mat ch="for mal para">
<p>
<xsl : appl y-tenpl ates/ >
</ p>
</ xsl:tenpl ate>

<xsl:tenplate match="fornal para/title">
<xsl : appl y-tenpl at es/ ></ b>
<xsl:text> </xsl:text>

</ xsl:tenpl ate>

<xsl:tenpl ate mat ch="fornal para/ para">
<xsl : appl y-tenpl at es/ >
</ xsl:tenpl ate>

There arethreetemplatesdefined, onefor the<f or mal par a> element itself, and onefor each of itschildren elements.
Themat ch attributevaluef or mal par a/ti t| e inthesecond templateisan XPath expressionindicatinga<tit| e>
element that isan immediate child of a<f or mal par a> element. Thisdistinguishessuch titlesfromother<ti t| e>
elements used in DocBook. XPath expressions are the key to controlling how your templates are applied.

In general, the XSL processor has internal rules that apply templates that are more specific before templates that are
less specific. That letsyou control the details, but also provides a fallback mechanism to aless specific template when
you don't supply the full context for every combination of elements. This feature is illustrated by the third template,
for f or mal par a/ par a. By including this template, the stylesheet processes a <par a> within <f or mal par a>
in aspecia way, in this case by not outputting the HTML <p> tags already output by its parent. If this template had
not been included, then the processor would have fallen back to the template specified by mat ch="par a" described
above, which would have output a second set of <p> tags.

Thisis an alpha version of this book. 80

Publishing DocBook Documents

Y ou can also control template context with X SL modes, which are used extensively in the DocBook stylesheets. Modes
let you processthe sameinput morethan oncein different ways. A node attributeinan<xsl : t enpl at e> definition
adds a specific mode name to that template. When the same mode nameis used in <xsl : appl y-t enpl at es/ >,
it acts as afilter to narrow the selection of templates to only those selected by the mat ch expression and that have
that mode name. Thisletsyou definetwo different templates for the same element match that are applied under different
contexts. For example, there are two templates defined for DocBook <l i st i t en> elements:

<xsl:tenmplate match="listiten>
<xsl:apply-tenplates/></1i>
</ xsl:tenpl at e>

<xsl:tenplate match="listiten! node="xref">
<xsl : nunber format="1"/>
</ xsl :tenpl at e>

The first template is for the normal list item context where you want to output the HTML <I i > tags. The second
templateis called with <xsl : appl y-t enpl at es sel ect ="$target" node="xr ef "/ > in the context of
processing <xr ef > elements. In this casethe sel ect attribute locates the ID of the specific list item and the node
attribute selects the second template, whose effect is to output its item number when it isin an ordered list. Because
there are many such special needs when processing <xr ef > elements, it is convenient to define a mode name xr ef

to handle them all. Keep in mind that mode settings do not automatically get passed down to other templates through
<xsl : appl y-tenpl at es/ >.

Programming features

Although XSL istemplate-driven, it also has some features of traditional programming languages. Here are some ex-
amples from the DocBook stylesheets.

Assign a value to a variabl e:
<xsl :variabl e nane="refel enf' sel ect="nanme($target)"/>

If statement:
<xsl:if test="$show. conments">

<i ><xsl:call-tenpl ate nanme="inline.charseq"/></i>
</xsl:if>

Case statenent:
<xsl : choose>
<xsl : when test="@ol ums">
<xsl : val ue- of sel ect="@ol ums"/>
</ xsl : when>
<xsl : ot herw se>1</ xsl : ot her wi se>
</ xsl : choose>

Call atenplate by name |i ke a subroutine, passing parameter val ues and accepting a return val ue:
<xsl :cal | -tenpl ate name="xref.xrefl abel ">

<xsl:wi th-param nanme="target" select="$target"/>
</ xsl:call-tenpl at e>

However, you can't always use these constructs as you do in other programming languages. Variables in particular
have very different behavior.

Using variables and parameters

XSL provides two elements that let you assign a value to a name: <xsl : vari abl e> and <xsl : par an®. These
share the same name space and syntax for assigning names and val ues. Both can bereferred to using the $nanme syntax.

Thisis an alpha version of this book. 81

Publishing DocBook Documents

The main difference between these two elementsis that a param's value acts as a default value that can be overridden
when atemplateiscalled using a<xsl : wi t h- par anm> element asin the last example above.

Here are two examples from DocBook:

<xsl : param nane="col s">1</ xsl : par an»>
<xsl :vari abl e name="segnunm' sel ect="position()"/>

In both elements, the name of the parameter or variableis specified with the name attribute. So the name of thepar am
hereiscol s and the name of thevar i abl e issegnum The value of either can be supplied in two ways. The value
of thefirst exampleisthetext node"1" and is supplied as the content of the element. The value of the second example
is supplied asthe result of the expression initssel ect attribute, and the element itself has no content.

The feature of XSL variablesthat is odd to new usersisthat once you assign a value to a variable, you cannot assign
anew value within the same scope. Doing so will generate an error. So variables are not used as dynamic storage bins
they way they are in other languages. They hold a fixed value within their scope of application, and then disappear
when the scope is exited. This feature is aresult of the design of XSL, which is template-driven and not procedural.
Thismeansthereisno definite order of processing, so you can't rely on the values of changing variables. To usevariables
in XSL, you need to understand how their scope is defined.

Variables defined outside of all templates are considered global variables, and they are readable within all templates.
The value of a global variable is fixed, and its global value can't be altered from within any template. However, a
template can create alocal variable of the same name and give it adifferent value. That local value remainsin effect
only within the scope of the local variable.

V ariables defined within atemplate remain in effect only within their permitted scope, which isdefined asall following
siblings and their descendants. To understand such a scope, you haveto remember that X SL instructions are true XML
elementsthat are embedded in an XML family hierarchy of XSL elements, often referred to as parents, children, siblings,
ancestors and descendants. Taking the family analogy astep further, think of avariable assignment as a piece of advice
that you are allowed to giveto certain family members. Y ou can give your advice only to your younger siblings (those
that follow you) and their descendents. Y our older siblingswon't listen, neither will your parents or any of your ancestors.
To stretch the analogy a bit, it is an error to try to give different advice under the same name to the same group of
listeners (in other words, to redefine the variable). Keep in mind that this family is not the elements of your document,
but just the XSL instructions in your stylesheet. To help you keep track of such scopes in hand-written stylesheets, it
helpsto indent nested X SL elements. Hereis an edited snippet from the DocBook stylesheet filepi . xsl that illustrates
different scopes for two variables:

<xsl :tenpl ate name="dbhtm -attribute">

1
2 ...
3 <xsl : choose>

4 <xsl :when test="%count >count ($pis)">
5 <l-- npot found -->

6 </ xsl : when>

7 <xsl: ot herw se>

8 <xsl :variabl e name="pi ">

9 <xsl :val ue-of sel ect="%pi s[$count]"/>
10 </ xsl:vari abl e>
11 <xsl : choose>
12 <xsl : when test="contai ns($pi, concat ($attribute, '="))">
13 <xsl : vari abl e name="rest" sel ect ="substri ng-after($pi, concat ($attribute,'=))"/>
14 <xsl : vari abl e nane="quote" sel ect="substring($rest,1,1)"/>
15 <xsl : val ue- of sel ect ="substring-before(substring($rest, 2), $quote)"/>
16 </ xsl : when>
17 <xsl: ot herw se>
18 e
19 </ xsl : ot her wi se>

Thisis an alpha version of this book. 82

Publishing DocBook Documents

20 </ xsl : choose>
21 </ xsl : ot herw se>
22 </ xsl : choose>

23 </xsl:tenpl ate>

The scope of the variable pi begins on line 8 where it is defined in this template, and ends on line 20 when its last

sibling ends.t’ The scope of the variabler est beginson line 13 and ends on line 15. Fortunately, line 15 outputs an
expression using the value before it goes out of scope.

What happens when an <xsl : appl y-t enpl at es/ > element is used within the scope of alocal variable? Do the
templates that are applied to the document children get the variable? The answer is no. The templates that are applied
are not actually within the scope of the variable. They exist elsewhere in the stylesheet and are not following siblings
or their descendants.

To pass avalue to another template, you pass a parameter using the <xsl : wi t h- par an® element. This parameter
passing is usually done with calls to a specific named template using <xsl : cal | -t enpl at e>, although it works
with<xsl : appl y- t enpl at es> too. That's becausethe called template must be expecting the parameter by defining
itusinga<xsl : par ant element with the same parameter name. Any passed parameters whose names are not defined
in the called template are ignored.

Here is an example of parameter passing from docbook. xsl :

<xsl : cal | -t enpl at e nane="head. content" >
<xsl :wi t h- par am nane="node" sel ect="$doc"/>
</ xsl:call-tenpl ate>

Here atemplate named head. cont ent isbeing called and passed a parameter named node whose content is the
value of the $doc variable in the current context. The top of that template looks like this:

<xsl :tenpl at e nane="head. content ">
<xsl : param nanme="node" select="."/>

The template is expecting the parameter because it has a<xsl : par an® defined with the same name. The valuein
this definition is the default value. This would be the parameter value used in the template if the template was called
without passing that parameter.

Generating HTML output.

Y ou generate HTML from your DocBook XML files by applying the HTML version of the stylesheets. Thisis done
by using the HTML driver file docbook/ ht mM / docbook. xs| asyour stylesheet. That is the master stylesheet
filethat uses<xsl : i ncl ude> to pull inthe component filesit needsto assemble acompl ete stylesheet for producing
HTML.

The way the DocBook stylesheet generates HTML is to apply templates that output a mix of text content and HTML
elements. Starting at the top level in the main filedocbook. xsl :

<xsl:tenplate match="/">
<xsl :vari abl e nane="doc" select="*[1]"/>
<htnm >
<head>
<xsl:call-tenpl ate name="head. content">
<xsl :wi t h- param nane="node" sel ect="%$doc"/>
</ xsl :call-tenpl at e>
</ head>

I Technica ly, the scope extends to the end tag of the parent of the <xsl : vari abl e> element. That is effectively the last sibling.

Thisis an alpha version of this book. 83

Publishing DocBook Documents

<body>
<xsl : appl y-tenpl at es/ >
</ body>
</htm >
</ xsl:tenpl ate>

Thistemplate matches the root el ement of your input document, and starts the process of recursively applying templates.
It first definesavariable named doc and then outputstwo literal HTML elements<ht ml > and <head>. Thenit cals
anamed template head. cont ent to process the content of the HTML <head>, closes the <head> and startsthe
<body>. Thereit uses<xsl : appl y-t enpl at es/ > torecursively processthe entire input document. Then it just
closes out the HTML file.

Simple HTML elements can generated as literal elements as shown here. But if the HTML being output depends on
the context, you need something more powerful to select the element name and possibly add attributes and their values.
Hereis afragment from sect i ons. xsl that shows how a heading tag is generated using the <xsl : el ement >
and <xsl : attri but e> elements:

<xsl: el ement name="h{$l evel }">
<xsl:attribute name="class">title</xsl:attribute>
<xsl:if test="%l evel <3">
<xsl:attribute name="style">clear: all</xsl:attribute>
</xsl:if>
<a>
<xsl:attribute nane="nanme">
<xsl :call-tenpl ate name="object.id"/>
</ xsl:attribute>
10 <xsl : copy-of select="$title"/>
11 </ a>
12 </ xsl : el enent >

©CoOo~NOUhwWNPRE

This whole example is generating a single HTML heading element. Line 1 begins the HTML element definition by
identifying the name of the element. In this case, the nameis an expression that includes the variable $I evel passed
as a parameter to this template. Thus a single template can generate <h1>, <h2>, etc. depending on the context in
which it is called. Line 2 definesacl ass="ti t| e" attribute that is added to this element. Lines 3to 5 add a
style="cl ear all" attribute, but only if the heading level isless than 3. Line 6 opens an <a> anchor element.
Although thislooks like aliteral output string, it is actually modified by lines 7 to 9 that insert the nane attribute into
the <a> element. Thisillustrates that XSL is managing output elements as active element nodes, not just text strings.
Line 10 outputs the text of the heading title, also passed as a parameter to the template, enclosed in HTML boldface
tags. Line 11 closes the anchor tag with the literal </ a> syntax, while line 12 closes the heading tag by closing the
element definition. Since the actual element name isavariable, it couldn't use the literal syntax.

As you follow the sequence of nested templates processing elements, you might be wondering how the ordinary text
of your input document getsto the output. Inthefiledocbook. xs| you will find thistemplate that handles any text
not processed by any other template:

<xsl:tenmplate match="text()">
<xsl :val ue-of select="."/>
</ xsl:tenpl ate>

Thistemplate's body consists of the "value" of the text node, which isjust itstext. In general, all XSL processors have
some built-in templates to handle any content for which your stylesheet doesn't supply a matching template. This
template serves the same function but appears explicitly in the stylesheet.

Thisis an alpha version of this book. 84

Publishing DocBook Documents

Generating formatting objects.

Y ou generate formatting objects from your DocBook XML files by applying the fo version of the stylesheets. Thisis
done by using the fo driver filedocbook/ f o/ docbook. xsl| asyour stylesheet. That is the master stylesheet file
that uses <xsl : i ncl ude> to pull in the component files it needs to assemble a complete stylesheet for producing
formatting objects. Generating a formatting objects fileis only half the process of producing typeset output. Y ou also
need a formatting object processor such as the Apache XML Project's FOP as described in an earlier section.

The DocBook fo stylesheet works in a similar manner to the HTML stylesheet. Instead of outputting HTML tags, it
outputs text marked up with <f o: sonet hi ng> tags. For example, to indicate that some text should be kept in-line
and typeset with amonospace font, it might look like this:

<fo:inline-sequence font-fam | y="nonospace">/usr/man</fo:inline-sequence>

Thetemplatesindocbook/ f o/ i nl i ne. xsl that produce this output for aDocBook <f i | enane> element look
likethis:
<xsl:tenplate match="fil enane" >
<xsl:cal |l -tenpl ate nane="inline. nonoseq"/ >
</ xsl:tenpl ate>
<xsl :tenpl ate name="inline. nonoseq" >
<xsl : param nane="content ">
<xsl : appl y-tenpl ates/ >
</ xsl : par an>
<fo:inline-sequence font-fam | y="nonospace">
<xsl : copy-of sel ect="$content"/>
</fo:inline-sequence>
</ xsl:tenpl ate>

There are dozens of fo tags and attributes specified in the XSL standard. It is beyond the scope of this document to
cover how all of them are used in the DocBook stylesheets. Fortunately, thisis only an intermediate format that you
probably won't have to deal with very much directly unless you are writing your own stylesheets.

Customizing DocBook XSL stylesheets

The DocBook XSL stylesheets are written in amodular fashion. Each of the HTML and FO stylesheets starts with a
driver file that assembles a collection of component files into a complete stylesheet. This modular design puts similar
things together into smaller filesthat are easier to write and maintain than one big stylesheet. The modular stylesheet
files are distributed among four directories:

common/
contains code common to both stylesheets, including localization data
fo/
a stylesheet that produces XSL FO result trees
html/
a stylesheet that produces HTML/XHTML result trees
lib/

contains schemarindependent functions

Thisis an alpha version of this book. 85

Publishing DocBook Documents

Thedriver filesfor each of HTML and FO stylesheetsareht m / docbook. xsl andf o/ docbook. xsl , respectively.
A driver file consists mostly of a bunch of <xsl : i ncl ude> instructions to pull in the component templates, and
then defines some top-level templates. For example:

<xsl :include href="../VERSI ON'/ >
<xsl:include href="../lib/lib.xsl"/>

<xsl :include href="../comon/l 10n. xsl "/ >
<xsl :include href="../comobn/comon. xsl"/>
<xsl :include href="autotoc.xsl"/>

<xsl :include href="lists.xsl"/>

<xsl :include href="callout.xsl"/>

<xsl :include href="param xsl"/>

<xsl :include href="pi.xsl"/>

The first four modules are shared with the FO stylesheet and are referenced using relative pathnames to the common
directories. Then thelong list of component stylesheets starts. Pathnamesin include statements are always taken to be
relative to the including file. Each included file must be avalid XSL stylesheet, which meansits root element must be
<xsl : styl esheet >.

Stylesheet inclusion vs. importing

XSL actualy provides two inclusion mechanisms. <xsl :i ncl ude> and <xsl :inmport>. Of the two,
<xsl :i ncl ude> isthe simpler. It treats the included content as if it were actually typed into the file at that point,
and doesn't giveit any more or less precedence rel ative to the surrounding text. It isbest used when assembling dissim-
ilar templates that don't overlap what they match. The DocBook driver files use this instruction to assemble a set of
modules into a stylesheet.

In contrast, <xsl : i npor t > lets you manage the precedence of templates and variables. It is the preferred mode of
customizing another stylesheet because it lets you override definitions in the distributed stylesheet with your own,
without altering the distribution files at all. Y ou simply import the whole stylesheet and add whatever changes you
want.

The precedence rules for import are detailed and rigorously defined in the XSL standard. The basic rule is that any
templates and variables in the importing stylesheet have precedence over equivalent templates and variables in the
imported stylesheet. Think of the imported stylesheet elements as a fallback collection, to be used only if amatch is
not found in the current stylesheet. Y ou can customize the templates you want to change in your stylesheet file, and
let the imported stylesheet handle the rest.

Note

CustomizingaDocBook XSL stylesheet isthe opposite of customizing aDocBook DTD. When you customize
aDocBook DTD, the rules of XML and SGML dictate that the first of any duplicate declarations wins. Any
subsequent declarations of the same element or entity areignored. The architecture of the DTD providesslots
for inserting your own custom declarations early enough in the DTD for them to override the standard declar-
ations. In contrast, customizing an XSL stylesheet is simpler because your definitions have precedence over
imported ones.

Y ou can carry modularization to deeper levels because module files can also include or import other modules. You'll
need to be careful to maintain the precedence that you want as the modules get rolled up into a compl ete stylesheet.

Customizing with <xsl : i nmport >

Thereiscurrently one example of customizingwith<xsl : i npor t >intheHTML version of the DocBook stylesheets.
Thext chunk. xsl stylesheet modifiesthe HTML processing to output many smaller HTML filesrather than asingle

Thisis an alpha version of this book. 86

Publishing DocBook Documents

largefile per input document. It uses XSL extensions defined only inthe XSL processor XT. Inthedriver filext ch-
unk. xsl , thefirstinstructionis<xsl : i nport href ="docbook. xsl "/ >. That instruction importsthe original
driver file, which in turn uses many <xsl : i ncl ude> instructionsto include all the modules. That single import in-
struction gives the new stylesheet the complete set of DocBook templates to start with.

After the import, xt chunk. xsl redefines some of the templates and adds some new ones. Here is one example of
aredefined template:

Oiginal tenplate in autotoc. xsl
<xsl:tenplate name="href.target">
<xsl : param nane="obj ect" select="."/>
<xsl :text>#</xsl:text>
<xsl:cal | -tenpl ate nane="object.id">
<xsl : wi t h- par am name="obj ect" sel ect =" $obj ect"/ >
</ xsl:call-tenpl at e>
</ xsl:tenpl ate>

New t enpl ate in xtchunk. xsl
<xsl:tenplate name="href.target">
<xsl : param nane="obj ect" select="."/>
<xsl :vari abl e nane="i schunk" >
<xsl:call-tenpl ate name="chunk">
<xsl : wi t h- par am nane="node" sel ect ="$obj ect"/>
</ xsl:call-tenpl at e>
</ xsl:vari abl e>

<xsl : appl y-tenpl at es nobde="chunk-fil ename" sel ect ="$object"/>

<xsl:if test="$i schunk="0"">
<xsl :text>#</xsl:text>
<xsl :cal |l -tenpl ate nane="object.id">
<xsl : wi t h- par am name="obj ect" sel ect =" $obj ect"/ >
</ xsl:call-tenpl at e>
</xsl:if>
</ xsl:tenpl at e>

The new template handles the more complex processing of HREFs when the output is split into many HTML files.
Where the old template could simply output #0bj ect . i d, the new one outputsf i | enanme#obj ect . i d.

Setting stylesheet variables

You may not have to define any new templates, however. The DocBook stylesheets are parameterized using XSL
variables rather than hard-coded values for many of the formatting features. Since the <xsl : i npor t > mechanism
also letsyou redefine global variables, thisgivesyou an easy way to customize many features of the DocBook stylesheets.
Over time, morefeatureswill be parameterized to permit customization. If you find hardcoded valuesin the stylesheets
that would be useful to customize, please let the maintainer know.

Near the end of the list of includes in the main DocBook driver file is the instruction <xsl : i ncl ude
hr ef =" param xsl "/ >. The par am xsl fileis the most important module for customizing a DocBook XSL
stylesheet. Thismodule contains no templ ates, only definitions of stylesheet variables. Since these variables are defined
outside of any template, they are global variables and apply to the entire stylesheet. By redefining these variablesin
an importing stylesheet, you can change the behavior of the stylesheet.

To createacustomized DocBook stylesheet, you simply create anew stylesheet filesuchasmny st yl e. xsl that imports
the standard stylesheet and adds your own new variable definitions. Here is an example of acomplete custom stylesheet
that changes the depth of sections listed in the table of contents from two to three:

Thisis an alpha version of this book. 87

Publishing DocBook Documents

<?xm version="1.0"?>

<xsl:styl esheet xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or ni'
version="1.0
xm ns="http://ww. wW3. org/ TR/ xhtml 1/transitional "
excl ude-resul t-prefixes="#default">

<xsl:inport href="docbook. xsl"/>

<xsl :variabl e nane="toc. secti on. dept h">3</xsl : vari abl e>
<!-- Add other variable definitions here -->

</ xsl : styl esheet >

Following the opening stylesheet element are the import instruction and one variable definition. The variable
toc. secti on. dept hwasdefinedinpar am xsl| withvalue"2", and hereitisdefined as"3". Sincetheimporting
stylesheet takes precedence, this new value is used. Thus documents processed withmyst yl e. xsl instead of doc-
book. xsl| will have threelevels of sectionsin the tables of contents, and all other processing will be the same.

Usethelist of variablesin par am xsl| asyour guide for creating a custom stylesheet. If the changes you want are
controlled by avariable there, then customizing is easy.

Writing your own templates

If the changes you want are more extensive than what is supported by variables, you can write new templates. You
can put your new templates directly in your importing stylesheet, or you can modularize your importing stylesheet as
well. Y ou can write your own stylesheet modul e containing a collection of templates for processing lists, for example,
and put them in afile named nmyl i st s. xsl . Then your importing stylesheet can pull in your list templates with a
<xsl:include href="nylists.xsl"/> ingtruction. Since your included template definitions appear after
the main import instruction, your templates will take precedence.

You'll need to make sure your new templates are compatible with the remaining modules, which means:
» Any named templates should use the same name so calling templates in other modules can find them.

* Your template set should process the same elements matched by templatesin the original module, to ensure complete
coverage.

* Includethesameset of <xsl : par an® elementsin each templateto interface properly with any calling templates,
although you can set different values for your parameters.

« Any templates that are used like subroutines to return a value should return the same data type.

Writing your own driver

Another approach to customizing the stylesheets is to write your own driver file. Instead of using <xsl : i nport
hr ef =" docbook. xsl "/ >, you copy that fileto anew name and rewrite any of the<xsl : i ncl ude/ > instructions
to assemble a custom collection of stylesheet modules. One reason to do thisisto speed up processing by reducing the
size of the styleshest. If you are using acustomized DocBook DTD that omits many elementsyou never use, you might
be able to omit those modules of the stylesheet.

Localization

The DocBook stylesheetsinclude featuresfor localizing generated text, that is, printing any generated text in alanguage
other than the default English. In general, the stylesheets will switch to the language identified by al ang attribute

Thisis an alpha version of this book. 88

Publishing DocBook Documents

when processing el ements in your documents. If your documents use the | ang attribute, then you don't need to cus-
tomize the stylesheets at all for localization.

Asfar as the stylesheets go, al ang attribute is inherited by the descendents of a document element. The stylesheet
searchesfor al ang attribute using this XPath expression:

<xsl :variabl e nane="Il ang-attr"
sel ect =" ($target/ancestor-or-self::*/ @ang
| $target/ancestor-or-self::*/@m:lang)[last()]"/>

This locates the attribute on the current element or its most recent ancestor. Thusal ang attribute isin effect for an
element and al of its descendents, unlessit isreset in one of those descendents. If you defineit in only your document
root element, then it applies to the whole document:

<?xm version="1.0"7?>

<! DOCTYPE book PUBLIC "-//QASI S//DTD DocBook XM. V4.0//EN' "docbook. dtd">

<book | ang="fr">

</ book>

When text is being generated, the stylesheet checks the most recent | ang attribute and looks up the generated text

strings for that language in alocalization XML file. These arelocated in the conmon directory of the stylesheets, one
file per language. Here isthetop of thefilef r. xm :

<l ocal i zati on | anguage="fr">

<gent ext key="abstract" t ext =" Ré suné "/ >
<gent ext key="answer" text="R "/ >

<gent ext key="appendi x" t ext =" Annexe"/ >

<gentext key="article" text="Article"/>

<gent ext key="bhi bl i ography" t ext ="Bi bl i ogr aphi e"/ >

The stylesheet templates use the gentext key names, and then the stylesheet looks up the associated text value when
the document is processed with that lang setting. Thefilel 10n. xm (notethe. xm suffix) liststhe filenames of all
the supported languages.

You can also create a custom stylesheet that sets the language. That might be useful if your documents don't make
appropriate use of the | ang attribute. The module | 10n. xs| defines two global variables that can be overridden
with an importing stylesheet as described above. Here are their default definitions:

<xsl :variabl e nane="I| 10n. gent ext . | anguage" ></ xsl : vari abl e>
<xsl :variabl e nane="I| 10n. gent ext . def aul t. | anguage" >en</ xsl : vari abl e>

Thefirst one sets the language for al elements, regardless of an element's| ang attribute value. The second just sets
adefault language for any elements that haven't got al ang setting of their own (or their ancestors).

Thisis an alpha version of this book. 89

Customizing DocBook

$Revision: 1.2 $
$Date; 2002/04/18 22:06:46 $

For the applications you havein mind, DocBook “out of the box” may not be exactly what you need. Perhaps you need
additional inline elements or perhaps you want to remove elementsthat you never want your authorsto use. By design,
DocBook makes this sort of customization easy.

This chapter explains how to make your own customization layer. Y ou might do thisin order to:
* Add new elements

* Remove elements

» Change the structure of existing elements

* Add new attributes

* Remove attributes

» Broaden the range of values allowed in an attribute

» Narrow therange of valuesin an attribute to a specific list or afixed value

Y ou can use customization layers to extend DocBook or subset it. Creating a DTD that is a strict subset of DocBook
means that all of your instances are till completely valid DocBook instances, which may be important to your tools
and stylesheets, and to other people with whom you share documents. An extension adds new structures, or changes
the DTD in away that is not compatible with DocBook. Extensions can be very useful, but might have a great impact
on your environment.

Customization layers can be as small asrestricting an attribute value or aslarge as adding an entirely different hierarchy
on top of the inline elements.

Should You Do This?

Changing aDTD can have awide-ranging impact on the tools and stylesheets that you use. It can have an impact on
your authors and on your legacy documents. Thisisespecialy trueif you make an extension. If you rely on your support
staff to install and maintain your authoring and publishing tools, check with them before you invest a lot of time
modifying the DTD. There may be additional issues that are outside your immediate control. Proceed with caution.

That said, DocBook is designed to be easy to modify. This chapter assumesthat you are comfortable with SGML/XML
DTD syntax, but the examples presented should be agood springboard to learning the syntax if it's not already familiar
to you.

Thisis an alpha version of this book.

Customizing DocBook

If You Change DocBook, It's Not DocBook Anymore!

The DocBook DTD is usually referenced by its public identifier:

-/ / OASI S/ / DTD DocBook V3.1//EN
Previous versions of DocBook, V3.0 and the V2 variants, used the owner identifier Davenport, rather than OASIS.

If you make any changes to the structure of the DTD, it isimperative that you alter the public identifier that you use
for the DTD and the modules you changed. The license agreement under which DocBook is distributed gives you
complete freedom to change, modify, reuse, and generally hack the DTD in any way you want, except that you must
not call your aterations “DocBook.”

Y ou should change both the owner identifier and the description. The original DocBook formal public identifiers use
the following syntax:

-/ /1 OASI S/ /text-cl ass DocBook description Wersion//EN

Y our own formal public identifiers should use the following syntax in order to record their DocBook derivation:

-//your-owner-1D/text-class DocBook Wer si on-Based [Subset | Ext ensi on| Vari ant] your - descri p-and-versi on//1 ang

For example:

-// O Reilly//DTD DocBook V3.0-Based Subset V1.1//EN

If your DTD isa proper subset, you can advertise this status by using the Subset keyword in the description. If your
DTD contains any markup model extensions, you can advertise this status by using the Ext ensi on keyword. If you'd
rather not characterize your variant specifically as a subset or an extension, you can leave out thisfield entirely, or, if
you prefer, usethe Var i ant keyword.

Thereisonly onefilethat you may change without changing the public identifier: dbgenent . nod. And you can add
only entity and notation declarations to that file. (Y ou can add anything you want, naturally, but if you add anything
other than entity and notation declarations, you must change the public identifier!)

Customization Layers

SGML and XML DTDs are really just collections of declarations. These declarations are stored in one or more files.
A complete DTD is formed by combining these files together logically. Parameter entities are used for this purpose.
Consider the following fragment:

<IENTITY % dbpool SYSTEM "dbpool . nod" > “

<IENTI TY % dbhi er SYSTEM "dbhi er. nod" > E

%lbpool ; E’
%dbhi er; ﬂ

Thisis an alpha version of this book. 91

Customizing DocBook

“Thislinedeclarastheparameter entity dbpool and associatesit with thefile dbpool . nod.

EThislinedeclarestheparameter entity dbhi er and associatesit with thefile dbhi er . nod.
E’Thisline references dbpool , which loadsthe filedbpool . nbd and inserts its content here.
ﬂSimilarly, thislineloads dbhi er . nod.

It is an important feature of DTD parsing that entity declarations can be repeated. If an entity is declared more than
once, then the first declaration is used. Given this fragment:

<IENTITY foo "Lenny">
<IENTITY foo "Nornt>

The replacement text for & oo; is“Lenny.”

These two notions, that you can break a DTD into modules referenced with parameter entities and that the first entity
declaration is the one that counts, are used to build “customization layers.” With customization layers you can write
aDTD that references some or al of DocBook, but adds your own modifications. Modifying the DTD this way means
that you never have to edit the DocBook modules directly, which is atremendous boon to maintaining your modules.
When the next rel ease of DocBook comes out, you usually only have to make changesto your customization layer and
your modification will be back in sync with the new version.

Customization layers work particularly well in DocBook because the base DTD makes extensive use of parameter
entities that can be redefined.

Understanding DocBook Structure

DocBook isalargeand, at first glance, fairly complex DTD. Much of the apparent complexity is caused by the prolific
use of parameter entities. Thiswas an intentional choice on the part of the maintainers, who traded “raw readability”
for customizability. This section provides a general overview of the structure of the DTD. After you understand it,
DocBook will probably seem much less complicated.

DocBook Modules

DocBook iscomposed of seven primary modules. These modules decomposethe DTD into large, related chunks. Most
modifications are restricted to a single chunk.

shows the module structure of DocBook as a flowchart.

Thisis an alpha version of this book. 92

Customizing DocBook

Figure5.1. Structure of the DocBook DTD

Thisis an alpha version of this book.

93

Customizing DocBook

The modules are:
docbook. dtd

The main driver file. This module declares and references the other top-level modules.
dbhi er . nod

The hierarchy. Thismodule declares the elementsthat provide the hierarchical structure of DocBook (sets, books,
chapters, articles, and so on).

Changes to this module alter the top-level structure of the DTD. If you want to write a DocBook-derived DTD
with a different structure (something other than a book), but with the same paragraph and inline-level elements,
you make most of your changes in this module.

dbpool . nod

The information pool. This module declares the elements that describe content (inline elements, bibliographic
data, block quotes, sidebars, and so on) but are not part of the large-scale hierarchy of adocument. Y ou can incor-
porate these elements into an entirely different element hierarchy.

The most common reason for changing this module is to add or remove inline elements.
dbnot n. nod
The notation declarations. This module declares the notations used by DocBook.
This module can be changed to add or remove notations.
dbcent . nod
The character entities. This module declares and references the 1SO entity sets used by DocBook.
Changes to this module can add or remove entity sets.
dbgenent . nod
The general entities. Thisisaplace where you can customize the general entities availablein DocBook instances.

Thisisthe place to add, for example, boiler plate text, logos for institutional identity, or additional notations un-
derstood by your local processing system.

cal s-thl.dtd

The CALS Table Model. CALS is an initiative by the United States Department of Defense to standardize the
document types used across branches of the military. The CALS table model, published in MIL-HDBK-28001,
was for a long time the most widely supported SGML table model (one might now argue that the HTML table
model is more widely supported by some definitions of “widely supported”). In any event, it is the table model
used by DocBook.

DocBook predates the publication of the]OASIS Technical Resolution TR 9503:199Eli, which defines an industry
standard exchange table model and thus incorporates the full CALS Table Model.

i http://www.0asi s-open.org/html/a503.htm

Thisis an alpha version of this book. 94

http://www.oasis-open.org/html/a503.htm

Customizing DocBook

Most changes to the CAL Stable model can be accomplished by modifying parameter entitiesin dbpool . nod;
changing this DTD fragment is strongly discouraged. If you want to use a different table model, remove this one
and add your own.

*. gm

The SO standard character entity sets. These entity sets are not actually part of the official DocBook distribution,
but are referenced by default.

There are some additional modules, initially undefined, that can be inserted at several placesfor “redeclaration.” This
is described in more detail in fhe section called “ Removing Admonitions from Table Entries].”

DocBook Parameterization

Customization layers are possible because DocBook has been extensively parameterized so that it is possible to make
any changes that might be desired without ever editing the actual distributed modules. The parameter entities comein
severa flavors:

% .

% .

% .

% .

% .

% .

cl ass;
Classes group elements of asimilar type: for example all thelistsareinthe % i st . cl ass; .

If youwant to add anew kind of something (anew kind of list or anew kind of verbatim environment, for example),
you generally want to add the name of the new element to the appropriate class.

m X;

Mixturesare collections of classesthat appear in content models. For exampl e, the content model of the Exanpl e
element includes ¥exanpl e. m x; . Not every element's content model is a single mixture, but elementsin the
same class tend to have the same mixture in their content model.

If you want to change the content model of some class of elements (lists or admonitions, perhaps), you generally
want to change the definition of the appropriate mixture.

nodul e;

The% . nodul e; parameter entities control around individual elementsand their attributelists.
For example, the element and attribute declarations for Abbr ev occur within a marked section delimited by
%abbr ev. nodul e; .

If you want to remove or redefine an element or its attribute list, you generally want to change its module marked
section to | GNORE and possibly add a new definition for it in your customization layer.

el enent ;

The % . el enent ; parameter entities were introduced in DocBook V3.1; they control marked sections around
individual element declarations.

attlist;

The%s . attlist; parameter entities were introduced in DocBook V3.1; they control marked sections around
individua attribute list declarations.

i ncl usi on; , % . excl usi on;

Thisis an alpha version of this book. 95

Customizing DocBook

These parameter entities control the inclusion and exclusion markup in element declarations.
Changing these declarations allows you to make global changes to the inclusions and exclusionsin the DTD.
% ocal . *;

The% ocal . *; parameter entities are alocal extension mechanism. Y ou can add markup to most entity declar-
ations simply by declaring the appropriate local parameter entity.

The General Structure of
Customization Layers

Although customization layersvary in complexity, most of them have the same general structure as other customization
layers of similar complexity.

In the most common case, you probably want to include the entire DTD, but you want to make some small changes.
These customization layerstend to look like this:

1

Overrides of Entity Declarations Here

a

<IENTITY % ori g-docbook "-//OASIS//DTD DocBook V3.1//EN'>
%or i g- docbook;

New Modi fi ed El ement and Attribute Declarations Here

“Declare new values for parameter entities (% ocal . *; , % . el ement;, % . att! i st ;) that you wish to
modify.

EI nclude the entire DocBook DTD by parameter entity reference.
E’Add new element and attribute declarations for any elements that you added to the DTD.

In slightly more complex customization layers, the changes that you want to make are influenced by the interactions
between modules. In these cases, rather than including the whole DTD at once, you include each of the modules sep-
arately, perhaps with entity or element declarations between them:

Overrides of Mdst Entity Declarations Here

<IENTITY % orig-pool "-//QOASIS//ELEMENTS DocBook I nformation Pool V3.1//EN'>
%ori g- pool ;

Overrides of Docunent Hierarchy Entities Here

<IENTITY %orig-hier "-//QOASI S// ELEMENTS DocBook Document Hierarchy V3.1//EN'>
Y%ori g-hier;

New Mbdi fi ed El ement and Attribute Declarations Here

<IENTITY %orig-notn "-//QASI S//ENTI TI ES DocBook Notations V3.1//EN'>
%ori g- not n;

Thisis an alpha version of this book. 96

Customizing DocBook

<IENTITY %orig-cent "-//QOASIS//ENTITIES DocBook Character Entities V3.1//EN'>
%ori g-cent;

<IENTITY %orig-gen "-//QASIS//ENTITIES DocBook Additional General Entities V3.1//EN'>
%ori g- gen;

Finally, it'sworth noting that in the rare case in which you need certain kinds of very simple, “one-off” customizations,
you can do them in the document subset:

<! DOCTYPE book PUBLIC "-//QASI S// DTD DocBook V3.1//EN' [
Overrides of Entity Decl arations Here

New Mbdi fied El ement and Attribute Declarations Here

1>

<book>. .. </ book>

Writing, Testing, and Using a Customization Layer

The procedure for creating, testing, and using a customization layer is always about the same. In this section, we'll go
through the process in some detail. The rest of the sections in this chapter describe a range of useful customization
layers.

Deciding What to Change

If you're considering writing a customization layer, there must be something that you want to change. Perhaps you
want to add an element or attribute, remove one, or change some other aspect of the DTD.

Adding an element, particularly an inline element, is one possibility. If you're writing documentation about an object-
oriented system, you may have noticed that DocBook provides Cl assNamne but not Met hodNane. Suppose you
want to add Met hodName?

Deciding How to Change a Customization Layer

Figuring out what to change may be the hardest part of the process. The organization of the parameter entitiesis quite
logical, and, bearing in mind the organization described in fhe section called “ Understanding DocBook Structure,”
finding something similar usually provides a good model for new changes.

Met hodNare issimilarto Gl assNane, so G assNane isprobably agood model. G assNare isaninline el ement,
not a hierarchy element, soit'sin dbpool . nod. Searching for “classname” in dbpool . nod reveals:

<IENTITY % | ocal .tech.char.class "">

<IENTITY % tech. char.cl ass
"Action| Application| d assNane| Comrand| Conput er Qut put
| Dat abase| Emai | | EnVar | Er r or Code| Err or Nane| Err or Type| Fi | enane
| Functi on] GUI Button| GUI I con| GUI Label | GUI Menu| GUI Menul t em
| GUI Subnenu| Har dwar e| I nterface| I nt erfaceDefinition| KeyCap
| KeyCode| KeyConbo| KeySyni Li t er al | Const ant | Mar kup| Medi aLabel
| MenuChoi ce| MouseBut t on| MsgText | Opt i on| Opt i onal | Par anet er
| Pronpt | Property| Repl aceabl e| Ret ur nVal ue| SG\MLTag| StructFi el d
| St ruct Name| Synbol | Syst eml t en] Token| Type| User | nput | Var Nane
% ocal . tech. char.cl ass; ">

Searching further reveals the element and attribute declarations for Cl assNane.

Thisis an alpha version of this book. 97

Customizing DocBook

It would seem (and, in fact, it is the case) that adding Met hodNarne can be accomplished by adding it to the local
extension mechanism for % ech. char . cl ass; , namely % ocal . t ech. char. cl ass; , and adding element
and attribute declarations for it. A customization layer that does this can be seen in Example 5.1

Example5.1. Adding MethodName with a Customization L ayer

<IENTITY % | ocal .tech. char.cl ass "| Met hodName" > “

<l-- | oad DocBook --> E

<I ENTI TY % DocBookDTD PUBLIC "-// QASI S// DTD DocBook V3. 1//EN'>
%®ocBookDTD;

<! ELEMENT Met hodName - - ((%mallcptr.char.mx;)+) E’>

<! ATTLI ST Met hodNane
Y%comon. attri b;
%l assnane.role.attri b;
% ocal . cl assnane. attrib;
>

“Decl are the appropriate parameter entity (these are described in fhe section called “ DocBook Parameterization”).
The declaration in your customization layer is encountered first, so it overrides the definition in the DocBook
DTD (al thelocal classes are defined as empty in the DTD).

EUse aparameter entity to load the entire DocBook DTD.

E’Add an element declaration for the new element. The content model for this element is taken directly from the
content model of Cl assNane.

ﬂAdd an attribute list declaration for the new element. These are the same attributes as Cl assNane.

Using Your Customization Layer

In order to use the new customization layer, you must saveit in afile, for examplemydocbk. dt d, and then you must
use the new DTD in your document.

The simplest way to use the new DTD isto point to it with a system identifier:

<! DOCTYPE chapter SYSTEM "/ path/t o/ mydocbk. dtd">

<chapter><title>W Chapter</title>

<par a>

The Java <cl assnanme>Mat h</ cl assnane> cl ass provi des a

<met hodnane>abs</ net hodnanme> net hod to conpute absol ute value of a nunber.
</ par a>

</ chapt er>

If you plan to use your customization layer in many documents, or exchange it with interchange partners, consider
giving your DTD itsown publicidentifier, asdescribed infhe section called “If Y ou Change DocBook, It's Not DocBook
Anymorel}

Thisis an alpha version of this book. 98

Customizing DocBook

In order to use the new public identifier, you must add it to your catalog:

PUBLI C "-//Your Organization//DTD DocBook V3. 1-Based Extension V1.0//EN'
"/ share/ sgm / nydocbk. dt d"
and use that public identifier in your documents:

<! DOCTYPE chapt er
PUBLI C "-//Your Organization//DTD DocBook V3. 1-Based Extension V1.0//EN'>
<chapter><title>My Chapter</title>
<par a>
The Java <cl assname>Mat h</ cl assnane> cl ass provi des a
<met hodnane>abs</ net hodname> nmet hod to conpute absol ute value of a nunber.
</ par a>
</ chapt er >

If you're using XML, remember that you must provide a system identifier that satisfies the requirements of a Uniform
Resource Identifier (URI).

Testing Your Work
DTDs, by their nature, contain many complex, interrelated elements. Whenever you make a change to the DTD, it's
always wise to use a validating parser to double-check your work. A parser like nsgmls from James Clark's SP can

identify elements (attributes, parameter entities) that are declared but unused, aswell as onesthat are used but undeclared.

A comprehensive test can be accomplished with nsgmls using the - wal | option. Create a ssimple test document and
run:

nsgm s “-sv E wal | test.sgm

“The - s option tells nsgmlsto suppressits normal output (it will still show errors, if there are any). The- v option
tellsnsgmisto print its version number; this ensures that you always get some output, even if there are no errors.

The - wal | option tells nsgmls to provide a comprehensive list of all errors and warnings. You can use less
verbose, and more specific options instead; for example, - wundef i ned to flag undefined elements or - wun-
used- par amto warn you about unused parameter entities. The nsgmls documentation provides acompletelist
of warning types.

DocBook V3.1 Warnings

If you run the preceding command over DocBook V3.1, you'll discover one warning generated by the DTD:

nsgm s:1: SP version "1.3"
nsgm s: cal s-tbl.dtd: 314: 37: W content nodel is mxed but does not all ow #PCDATA ever ywhere

Thisisnot truly an error inthe DTD, and can safely be ignored. The warning is caused by “pernicious mixed content”
in the content model of DocBook's Ent r y element. Seethe Ent r y reference page for a complete discussion.

Thisis an alpha version of this book. 99

Customizing DocBook

Removing Elements

DocBook has a large number of elements. In some authoring environments, it may be useful or necessary to remove
some of these elements.

Removing MsgSet

MsgSet isafavorite target. It has a complex internal structure designed for describing interrelated error messages,
especialy on systems that may exhibit messages from severa different components. Many technical documents can
do without it, and removing it leaves one less complexity to explain to your authors.

shows a customization layer that removes the MsgSet element from DocBook:

Example 5.2. Removing M sgSet

<IENTITY % conpound. cl ass "Procedure| Si deBar "> “

<IENTITY % nmsgset. content. nodul e " | GNORE" > E

<!-- | oad DocBook -->

<IENTI TY % DocBookDTD PUBLIC "-//QASI S// DTD DocBook V3.1//EN'>
%®ocBookDTD;

“Removel\/lsgSet fromthe%eonpound. cl ass; . Thisistheonly placeinthe DTD whereMsgSet isreferenced.

EEXd ude the definition of MsgSet and all of its subelements from the DTD.

Removing Computer Inlines

DocBook contains alarge number of computer inlines. The DocBook inlines define a domain-specific vocabulary. If
you're working in another domain, many of them may be unnecessary. Y ou can remove a bunch of them by redefining
the% ech. char. cl ass; parameter entity and then excluding the declarationsfor the elementsremoved. Theinitial
definition of % ech. char . cl ass; is.

<IENTITY % tech.char.cl ass
"Action| Application| d assNane| Comrand| Conmput er Qut put
| Dat abase| Emai | | EnVar | Err or Code| Er r or Nane| Er r or Type| Fi | ename
| Functi on| GUI Button| GUI | con| GUI Label | GUI Menu| GUI Menul t em
| GUI Subnenu| Har dwar e| I nt erface| I nterfaceDefi nition| KeyCap
| KeyCode| KeyConbo| KeySyni Li t er al | Mar kup| Medi aLabel | MenuChoi ce
| MouseBut t on| MsgText | Opti on| Opti onal | Par anet er | Pronpt | Property
| Repl aceabl e| Ret ur nVal ue| SGVLTag| St ruct Fi el d| Struct Nane
| Synmbol | Syst em t en] Token| Type| User | nput
% ocal . tech. char.class; ">

When examining this list, it seemsthat you can delete all of the inlines except, perhaps, Appl i cat i on, Conrand,
Emai | ,Fi | ename, Li teral ,Repl aceabl e, Synbol ,andSyst em t em Thefollowing customization layer
removes them.

Thisis an alpha version of this book. 100

Customizing DocBook

Example 5.3. Removing Computer Inlines

<IENTITY % tech.char.cl ass

"Application| Command| Enmi | | Fi | enane| Li teral
Repl aceabl e| Synbol | System t ent' >
<IENTITY % acti on. nodul e "| GNORE" >
<IENTITY % cl assnane. nodul e "| GNORE" >
<IENTITY % conput er out put . nrodul e " | GNORE" >
<IENTITY % dat abase. nodul e "1 GNORE" >
<IENTITY % envar. nodul e "| GNORE" >
<IENTITY % errorcode. nodul e "| GNORE" >
<IENTITY % errornane. nodul e "| GNORE" >
<IENTITY % errortype. nodul e "1 GNORE" >
<I--<IENTITY % function. nodul e "l GNORE" >- - >
<IENTI TY % gui button. nodul e "1 GNORE" >
<IENTITY % gui i con. nodul e "| GNORE" >
<IENTITY % gui | abel . nodul e "1 GNORE" >
<IENTI TY % gui nmenu. nodul e " | GNORE" >
<IENTITY % gui menui tem nodul e " | GNORE" >
<IENTITY % gui submenu. nodul e "1 GNORE" >
<IENTITY % har dwar e. nodul e "1 GNORE" >
<IENTITY % interface. modul e "| GNORE" >
<IENTITY % interfacedefinition.nodule "Il GNORE">
<I--<IENTITY % keycap. nodul e "| GNORE" >- - >
<IENTITY % keycode. nodul e "| GNORE" >
<I--<IENTITY % keyconbo. nodul e "| GNORE" >- - >
<I--<IENTITY % keysym nodul e "| GNORE" >- - >
<IENTITY % mar kup. modul e " | GNORE" >
<IENTITY % nedi al abel . nodul e "I GNORE" >
<IENTITY % nmenuchoi ce. nodul e " | GNORE" >
<I--<IENTITY % nousebutton. nodul e "1 GNORE" >- - >
<I--<IENTITY % nmsgt ext. nodul e "| GNORE" >- - >
<I--<IENTITY % option. nodul e "I GNORE" >- - >
<I--<IENTITY % optional.nodule "I GNORE" >- - >
<I--<IENTITY % paraneter. nmodul e "| GNORE" >- - >
<IENTITY % pronpt. nmodul e " | GNORE" >
<IENTITY % property. nodul e "1 GNORE" >
<IENTITY % returnval ue. nodul e "1 GNORE" >
<IENTITY % sgm tag. nodul e " | GNORE" >
<IENTITY % structfield. nodul e "I GNORE" >
<IENTITY % structnane. nodul e " | GNORE" >
<IENTITY % t oken. nodul e "| GNORE" >
<IENTITY % type. nodul e "| GNORE" >
<IENTITY % useri nput. nodul e "1 GNORE" >

<l-- | oad DocBook -->
<! ENTI TY % DocBookDTD PUBLIC "-//QASI S// DTD DocBook V3.1//EN'>
%®ocBookDTD;

Initially weremoved several moreelementsfrom% ech. char . cl ass; (% uncti on. nodul e; ,%eycap. nod-

ul e;), but using the testing procedure described in fhe section called “ Testing Y our Work™,” we discovered that these
elements are used in other content models. Because they are used in other content modules, they cannot simply be re-
moved from the DTD by deleting them from % t ech. char . cl ass; . Even though they can't be deleted outright,
we've taken them out of most inline contexts.

It'slikely that a customization layer that removed this many technical inlineswould also remove some larger technical
structures (MsgSet , FuncSynopsi s), which allows you to remove additional elements from the DTD.

Thisis an alpha version of this book. 101

Customizing DocBook

Removing Synopsis Elements

Anocther possibility is removing the complex Synopsis elements. The customization layer in removes
CmdSynopsi s and FuncSynopsi s.

Example 5.4. Removing CmdSynopsis and FuncSynopsis
<IENTITY % synop. cl ass " Synopsi s">
<l-- Instead of "Synopsis|CndSynopsis|FuncSynopsis 9% ocal . synop. cl ass;" -->

<IENTITY % funcsynopsi s. content. nodul e " | GNORE" >
<IENTITY % cndsynsynopsi s. content. nodul e "1 GNORE" >

<l-- | oad DocBook -->
<I ENTI TY % DocBookDTD PUBLIC "-// OASI S/ / DTD DocBook V3.1//EN'>
%®0ocBook DTD;

Completely removing all Synopsis elements would require a more extensive customization. Y ou can't make any of the
% . cl ass; parameter entities completely empty without changing all of the parameter entities that use them. See
fhe section called “Removing an Entire Class].”

Removing Sectioning Elements

Perhaps you want to restrict your authors to only three levels of sectioning. To do that, you must remove the Sect 4
and Sect 5 elements, as shown in Example 5.3.

Example 5.5. Removing Sect4 and Sect5 Elements

exanpl es/renv. sect4. dtd

In order to completely remove an element that isn't in theinformation pool, it isusually necessary to redefinethe elements
that include it. In this case, because we're removing the Sect 4 element, we must redefine the Sect 3 element that
usesit.

Removing Admonitions from Table Entries

All of the customization layers that we've examined so far have been fairly straightforward. This section describes a
much more complex customization layer. Back in fhe section called “DocBook Modules]’ we mentioned that several
additional modules existed for “redeclaration.” The customization layer developed in this section cannot be written
without them.

The goal isto remove admonitions (War ni ng, Caut i on, Not e) from table entries.

is a straightforward, and incorrect, attempt.

Example 5.6. Removing Admonitions (First Attempt: Incorrect)

<I-- TH S CUSTOM ZATI ON LAYER CONTAI NS ERRCRS -->
<IENTITY % tabentry. m x

"%ist.class;

| 9% i nespeci fic.class;

| %par a. cl ass; | Gaphic

% ocal .tabentry. mx; ">

Thisis an alpha version of this book. 102

examples/remv.sect4.dtd

Customizing DocBook

<l-- | oad DocBook -->
<I ENTI TY % DocBookDTD PUBLIC "-//QASI S// DTD DocBook V3. 1//EN'>
9%®ocBookDTD;

Because the parameter entity % abent ry. m x; definesthe mixture of elementsallowed in table entries, you should
remove admonitions.

If you attempt to parse this DTD, you'll find that the declaration of % abent ry. m x; contains errors. While you
can redefine parameter entities, you cannot make reference to entities that have not been defined yet, so the use of
% ist.class;,%inespecific.class;,andsoon, aren't allowed.

Y our second attempt might look like Example 5.7.

Example 5.7. Removing Admonitions (Second Attempt: I ncorrect)

<l-- TH' S CUSTOM ZATI ON LAYER DOESN' T WORK -->

<l-- | oad DocBook -->
<! ENTI TY % DocBookDTD PUBLIC "-//QASI S// DTD DocBook V3.1//EN'>
%®ocBookDTD;

<IENTITY % tabentry. m x
"%ist.class;
| % i nespecific.class;
| %par a. cl ass; | Gaphic
% ocal .tabentry. mx; ">
Declaring % abent ry. mi x; after the DTD has been loaded removes the errors.

This example contains no errors, but it also doesn't have any effect. Remember, only the first entity declaration counts,
so the declaration of % abent ry. m x; indbpool . nod isthe one used, not your redeclaration.

The only way to fix this problem is to make use of one of the redeclaration placeholdersin DocBook.

Redeclaration placeholders are spots in which you can insert definitions into the middle of the DTD. There are four
redeclaration placeholdersin DocBook:

% dbnods;

Inserted in docbook. dt d, between dbpool . nod and dbhi er . nod. This placeholder is controlled by the
% nt er nod. r edecl . nodul e; marked section.

% dbpool ;

Inserted in the middle of dbpool . nod, between the % . cl ass; and % . m x; entity declarations. This
placeholder is controlled by the ¥dbpool . r edecl . modul e; marked section.

% dbhi er;

Inserted in the middle of dbhi er. nod, between the % . cl ass; and % . m Xx; entity declarations. This
placeholder is controlled by the ¥dbhi er . r edecl . modul e; marked section.

% dbhi er 2;

Also inserted into dbhi er . nod, after the % . m x; entity declarations. This placeholder is controlled by the
%bhi er . redecl 2. nodul e; marked section.

Thisis an alpha version of this book. 103

Customizing DocBook

Use the redeclaration placeholder that it occurs nearest to, but before the entity that you want to redeclare. In our case,

thisis % dbpool ; , asseen in Example 5.49.

Example 5.8. Removing Admonitions (Third Attempt: Correct, if confusing)

<IENTITY % dbpool . redecl . nrodul e "I NCLUDE" >
<IENTITY % r dbpool
"<IENTITY %l ocal .tabentry. mx "">
<IENTITY % tabentry. m x
"%1ist.class;
| % | i nespeci fic. cl ass;
| % par a. cl ass; | Graphic
% 1 ocal . tabentry. m x; "> >

<l-- | oad DocBook -->
<I ENTI TY % DocBookDTD PUBLIC "-//QASI S// DTD DocBook V3. 1//EN'>
9%®ocBookDTD;

uses numeric character entity referencesto escape the %signsin the entity declarations and nests an entity
declaration in another parameter entity. All of thisis perfectly legal, but a bit confusing. A clearer solution, and the
only practical solution if you're doing anything more than a single redeclaration, is to place the new declarations in
another file and include them in your customization layer by reference, like this:

Example 5.9. Removing Admonitions (Fourth Attempt: Correct)

In your customization layer:

<IENTI TY % dbpool . redecl . nodul e "I NCLUDE" >
<IENTITY % rdbpool SYSTEM "rdbpool . nod" >

<l-- | oad DocBook -->
<l ENTI TY % DocBookDTD PUBLIC "-// OASI S// DTD DocBook V3.1//EN'>
%®ocBook DTD;

Inrdbpool . nod:

<IENTITY % ocal .tabentry. mx "">
<IENTITY % tabentry. m x
"0 i st.class;
| % i nespecific.class;
| %par a. cl ass; | Gaphic
% ocal .tabentry. mx; ">

Removing an Entire Class

Perhaps the madification that you want to make is to completely remove an entire class of elements. (If you have no
need for synopsis elements of any sort, why not remove them?) In order to remove an entire class of elements, you
must not only redefine the class as empty, but you must also redefine al of the parameter entities that use that class.
The customization layer below completely removesthe% synop. cl ass; from DocBook. It requiresacustomization
layer, shown in Example 5.10, that includes both aredeclaration modulein dbpool . nod and aredeclaration module
indbhi er. nod.

Thisis an alpha version of this book. 104

Customizing DocBook

Example 5.10. Removing synop.class
In the customization layer:
<IENTITY % synop. class "">

<IENTITY % dbpool . redecl . nrodul e "I NCLUDE" >
<IENTITY % rdbpool SYSTEM "renv.synop. cl ass. rdbpool . nod" >

<IENTITY % dbhi er.redecl . nodul e "I NCLUDE" >
<IENTITY % rdbhi er SYSTEM "renv. synop. cl ass. rdbhi er. nod" >

<l-- | oad DocBook -->
<I ENTI TY % DocBookDTD PUBLIC "-//QASI S// DTD DocBook V3.1//EN'>
%®ocBookDTD;

Inrenv. synop. cl ass. rdbpool . nod:

il

Inrenv. synop. cl ass. rdbhi er. nod:

il

Removing Attributes

Just as there may be more elements than you need, there may be more attributes.

Removing an Attribute

Suppose you want to remove the Render As attribute from the Sect 1 element. Render As allows the author to
“cheat” in the presentation of hierarchy by specifying that the stylesheet should render a Sect 1 as something else: a
Sect 3, perhaps. details the removal of Render As.

Example 5.11. Removing Render As from Sect1

<IENTITY % sect 1. nodul e "| GNORE" >

@ e

<l-- | oad DocBook -->
<I ENTI TY % DocBookDTD PUBLIC "-// OASI S/ / DTD DocBook V3.1//EN'>
%®ocBook DTD;

<IENTITY %l ocal .sectl.attrib "">

oD

<IENTITY % sectl.role.attrib "%ole.attrib;">

<! ELEMENT Sectl1l - O (Sectllnfo?, (%ect.title.content;), (%av.class;)*, ﬂ
(((9%li vconponent. m x;) +,

Thisis an alpha version of this book. 105

Customizing DocBook

((wefentry.class;)* | Sect2* | SinpleSect*))
| (wefentry.class;)+ | Sect2+ | SinpleSect+), (%av.class;)*)
+(%ubiq. mx;)>

<! ATTLI ST Sect 1 ﬂ

% abel . attrib;

Ostatus.attrib;

%comon. attri b;

%sectl.role.attrib;

% ocal .sectl.attrib;
>

“Turn off the Sect 1 module so that the element and attribute declarationsin the DTD will be ignored.

EI nclude the DocBook DTD.

E’By keeping the local attribute declaration, we leave open the possibility of a simple customization layer on top
of our customization layer.

ﬂSi milarly, we keep the parameterized definition of the Rol e attribute.

EWe‘re changing the attribute list, not the element, so we've simply copied the Sect 1 element declaration from
the DocBook DTD.

ﬂFi nally, we declare the attribute list, leaving out the Render As.

Subsetting the Common Attributes

DocBook defines eleven common attributes; these attributes appear on every element. Depending on how you're pro-
cessing your documents, removing some of them can both simplify the authoring task and improve processing speed.

Some obvious candidates are:
Effectivity attributes (Arch , CS,...)

If you're not using all of the effectivity attributes in your documents, you can get rid of up to seven attributesin
one fell swoop.

Lang
If you're not producing multilingual documents, you can remove Lang.
Remap

The Renap attributeis designed to hold the name of a semantically equivalent construct from a previous markup
scheme (for example, aMicrosoft Word style template name, if you're converting from Word). If you're authoring
from scratch, or not preserving previous constructs with Rermmap, you can get rid of it.

Xr ef Label
If your processing system isn't using Xr ef Label , it'sa candidate as well.

The customization layer in reduces the common attributesto just | Dand Lang.

Thisis an alpha version of this book. 106

Customizing DocBook

Example 5.12. Removing Common Attributes

<IENTITY % comon. attrib
"ID 1D #| MPLI ED
Lang CDATA #l MPLI ED"
>
<IENTITY %idreq. cormon. attrib
"ID 1D #REQUI RED
Lang CDATA #l MPLI ED'
>

<l-- | oad DocBook -->
<I ENTI TY % DocBookDTD PUBLIC "-// OASI S// DTD DocBook V3.1//EN'>
9®ocBookDTD;

By definition, whatever attributes you define in the %common. attri b; and % dr eq. cormon. attri b; para
meter entities are the common attributes. In dbpool . nod |, these parameter entities are defined in terms of other
parameter entities, but there's no way to preserve that structure in your customization layer.

Adding Elements: Adding a Sect6

Adding a structural (as opposed to information pool) element generally requires adding its name to a class and then
providing the appropriate definitions. extends DocBook by adding aSect 6 element.

Example 5.13. Adding a Sect6 Element

<IENTITY % sect5. nodul e "| GNORE" >
<I ENTI TY % DocBookDTD PUBLIC "-// QASI S// DTD DocBook V3. 1//EN'>
9®ocBookDTD;
<l-- Add Sect6 to content nodel of Sect5 -->
<IENTITY % sect5.role.attrib "%ole.attrib;">
<! ELEMENT Sect5 - O (Sect5Info?, (%ect.title.content;), (%av.class;)*,
(((9%di vconponent. m x;) +,
((%efentry.class;)* | Sect6* | SinpleSect*))
| (YWefentry.class;)+ | Sect6+ | SinpleSect+), (%av.class;)*)>
<! ATTLI ST Sect5
% abel . attrib;
Ostatus.attrib;
%common. attrib;
%sect5.role.attrib;
>
<IENTITY % sect6.role.attrib "%ole.attrib;">
<! ELEMENT Sect6 - O (Sect6lnfo?, (%ect.title.content;), (%av.class;)*,
(((%di vconponent. m x;)+, ((%efentry.class;)* | SinpleSect*))
| (Wefentry.class;)+ | SinpleSect+), (%av.class;)*)>
<! ATTLI ST Sect6
% abel . attrib;
Ostatus.attrib;
%common. attrib;
%sect6.role.attrib;
>

Here we've redefined Sect 5 to include Sect 6 and provided a declaration for Sect 6. Note that we didn't bother to
provide Render As attributes in our redefinitions. To properly support Sect 6, you might want to redefine all of the
sectioning elementssothat Sect 6 isalegal attribute value for Render As.

Thisis an alpha version of this book. 107

Customizing DocBook

Other Modifications: Classifying a Role

TheRol e attribute, found on almost all of the elementsin DocBook, isa CDATA attribute that can be used to subclass
an element. In some applications, it may be useful to modify the definition of Rol e so that authors must choose one
of aspecific set of possible values.

In Example 5.14, Rol e on the Pr ocedur e element is constrained to the valuesRequi red or Opt i onal .

Example 5.14. Changing Role on Procedure

<IENTITY % procedure.role.attrib "Role (Required| Optional) #l MPLI ED'>
<!-- | oad DocBook -->

<I'ENTITY % DocBookDTD PUBLIC "-// QASI S// DTD DocBook V3. 1//EN'>
%ocBookDTD;

Thisis an alpha version of this book. 108

