TrilinosCouplings Development
Loading...
Searching...
No Matches
File List
Here is a list of all documented files with brief descriptions:
[detail level 1234]
  examples
  scaling
 example_CurlLSFEM.cppExample solution of a div-curl system on a hexahedral mesh using curl-conforming (edge) elements
 example_CVFEM.cppExample solution of an Advection Diffusion equation on a quadrilateral
or triangular mesh using the CVFEM
 example_DivLSFEM.cppExample solution of a div-curl system on a hexahedral mesh using div-conforming (face) elements
 example_GradDiv.cppExample solution grad-div diffusion system with div-conforming (face) elements
 example_Maxwell.cppExample solution of the eddy current Maxwell's equations using curl-conforming (edge) elements
 example_Maxwell_Tpetra.cppExample solution of the eddy current Maxwell's equations using curl-conforming (edge) elements
 example_Poisson.cppExample solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements
 example_Poisson_NoFE_Tpetra.cppExample solution of a Poisson equation on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled but not solved
 example_Poisson_stk.cppExample solution of a Poisson equation on a hexahedral or tetrahedral mesh using nodal (Hgrad) elements
 example_StabilizedADR.cppExample solution of a steady-state advection-diffusion-reaction equation with Dirichlet boundary conditon on a hexahedral mesh using nodal (Hgrad) elements and stabilization
 HybridIntrepidPoisson2D_Pamgen_Tpetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a quadrilateral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved
 HybridIntrepidPoisson3D_Pamgen_Tpetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved
 IntrepidPoisson_Pamgen_Epetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Epetra data structures, and optionally solved
 IntrepidPoisson_Pamgen_Tpetra_main.cppExample: Discretize Poisson's equation with Dirichlet boundary conditions on a hexahedral mesh using nodal (Hgrad) elements. The system is assembled into Tpetra data structures, and optionally solved
 TrilinosCouplings_IntrepidPoissonExample_SolveWithBelos.hppGeneric Belos solver for the Intrepid Poisson test problem example
 TrilinosCouplings_IntrepidPoissonExampleHelpers.hppHelper functions for Poisson test problem with Intrepid + Pamgen
  src
  ml
  NonlinML
 ml_nox_preconditioner1.cpp
 ml_nox_preconditioner2.cpp
 ml_nox_preconditioner_utils.cppML nonlinear preconditioner and solver
 nlnml_preconditioner1.cpp
 nlnml_preconditioner_utils.cppML nonlinear preconditioner and solver utilities