optics-core-0.4.1.1: Optics as an abstract interface: core definitions
Safe HaskellSafe-Inferred
LanguageHaskell2010

Optics.Indexed.Core

Description

This module defines basic functionality for indexed optics. See the "Indexed optics" section of the overview documentation in the Optics module of the main optics package for more details.

Synopsis

Class for optic kinds that can be indexed

class IxOptic k s t a b where Source #

Class for optic kinds that can have indices.

Methods

noIx :: NonEmptyIndices is => Optic k is s t a b -> Optic k NoIx s t a b Source #

Convert an indexed optic to its unindexed equivalent.

Instances

Instances details
(s ~ t, a ~ b) => IxOptic A_Fold s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic A_Fold is s t a b -> Optic A_Fold NoIx s t a b Source #

(s ~ t, a ~ b) => IxOptic A_Getter s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic A_Getter is s t a b -> Optic A_Getter NoIx s t a b Source #

IxOptic A_Lens s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic A_Lens is s t a b -> Optic A_Lens NoIx s t a b Source #

IxOptic A_Setter s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic A_Setter is s t a b -> Optic A_Setter NoIx s t a b Source #

IxOptic A_Traversal s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic A_Traversal is s t a b -> Optic A_Traversal NoIx s t a b Source #

(s ~ t, a ~ b) => IxOptic An_AffineFold s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic An_AffineFold is s t a b -> Optic An_AffineFold NoIx s t a b Source #

IxOptic An_AffineTraversal s t a b Source # 
Instance details

Defined in Optics.Indexed.Core

Methods

noIx :: forall (is :: IxList). NonEmptyIndices is => Optic An_AffineTraversal is s t a b -> Optic An_AffineTraversal NoIx s t a b Source #

conjoined :: is `HasSingleIndex` i => Optic k NoIx s t a b -> Optic k is s t a b -> Optic k is s t a b Source #

Construct a conjoined indexed optic that provides a separate code path when used without indices. Useful for defining indexed optics that are as efficient as their unindexed equivalents when used without indices.

Note: conjoined f g is well-defined if and only if f ≡ noIx g.

Composition of indexed optics

(%) :: forall k l m is js ks s t u v a b. (JoinKinds k l m, AppendIndices is js ks) => Optic k is s t u v -> Optic l js u v a b -> Optic m ks s t a b infixl 9 Source #

Compose two optics of compatible flavours.

Returns an optic of the appropriate supertype. If either or both optics are indexed, the composition preserves all the indices.

(<%>) :: (JoinKinds k l m, IxOptic m s t a b, is `HasSingleIndex` i, js `HasSingleIndex` j) => Optic k is s t u v -> Optic l js u v a b -> Optic m (WithIx (i, j)) s t a b infixl 9 Source #

Compose two indexed optics. Their indices are composed as a pair.

>>> itoListOf (ifolded <%> ifolded) ["foo", "bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]

(%>) :: (JoinKinds k l m, IxOptic k s t u v, NonEmptyIndices is) => Optic k is s t u v -> Optic l js u v a b -> Optic m js s t a b infixl 9 Source #

Compose two indexed optics and drop indices of the left one. (If you want to compose a non-indexed and an indexed optic, you can just use (%).)

>>> itoListOf (ifolded %> ifolded) ["foo", "bar"]
[(0,'f'),(1,'o'),(2,'o'),(0,'b'),(1,'a'),(2,'r')]

(<%) :: (JoinKinds k l m, IxOptic l u v a b, NonEmptyIndices js) => Optic k is s t u v -> Optic l js u v a b -> Optic m is s t a b infixl 9 Source #

Compose two indexed optics and drop indices of the right one. (If you want to compose an indexed and a non-indexed optic, you can just use (%).)

>>> itoListOf (ifolded <% ifolded) ["foo", "bar"]
[(0,'f'),(0,'o'),(0,'o'),(1,'b'),(1,'a'),(1,'r')]

reindexed :: is `HasSingleIndex` i => (i -> j) -> Optic k is s t a b -> Optic k (WithIx j) s t a b Source #

Remap the index.

>>> itoListOf (reindexed succ ifolded) "foo"
[(1,'f'),(2,'o'),(3,'o')]
>>> itoListOf (ifolded %& reindexed succ) "foo"
[(1,'f'),(2,'o'),(3,'o')]

icompose :: (i -> j -> ix) -> Optic k '[i, j] s t a b -> Optic k (WithIx ix) s t a b Source #

Flatten indices obtained from two indexed optics.

>>> itoListOf (ifolded % ifolded %& icompose (,)) ["foo","bar"]
[((0,0),'f'),((0,1),'o'),((0,2),'o'),((1,0),'b'),((1,1),'a'),((1,2),'r')]

icompose3 :: (i1 -> i2 -> i3 -> ix) -> Optic k '[i1, i2, i3] s t a b -> Optic k (WithIx ix) s t a b Source #

Flatten indices obtained from three indexed optics.

>>> itoListOf (ifolded % ifolded % ifolded %& icompose3 (,,)) [["foo","bar"],["xyz"]]
[((0,0,0),'f'),((0,0,1),'o'),((0,0,2),'o'),((0,1,0),'b'),((0,1,1),'a'),((0,1,2),'r'),((1,0,0),'x'),((1,0,1),'y'),((1,0,2),'z')]

icompose4 :: (i1 -> i2 -> i3 -> i4 -> ix) -> Optic k '[i1, i2, i3, i4] s t a b -> Optic k (WithIx ix) s t a b Source #

Flatten indices obtained from four indexed optics.

icompose5 :: (i1 -> i2 -> i3 -> i4 -> i5 -> ix) -> Optic k '[i1, i2, i3, i4, i5] s t a b -> Optic k (WithIx ix) s t a b Source #

Flatten indices obtained from five indexed optics.

icomposeN :: forall k i is s t a b. (CurryCompose is, NonEmptyIndices is) => Curry is i -> Optic k is s t a b -> Optic k (WithIx i) s t a b Source #

Flatten indices obtained from arbitrary number of indexed optics.

Indexed optic flavours

Functors with index

class Functor f => FunctorWithIndex i (f :: Type -> Type) | f -> i where #

Minimal complete definition

Nothing

Methods

imap :: (i -> a -> b) -> f a -> f b #

Instances

Instances details
FunctorWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Identity a -> Identity b #

FunctorWithIndex () Par1 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Par1 a -> Par1 b #

FunctorWithIndex () Maybe 
Instance details

Defined in WithIndex

Methods

imap :: (() -> a -> b) -> Maybe a -> Maybe b #

FunctorWithIndex Int ZipList 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> ZipList a -> ZipList b #

FunctorWithIndex Int IntMap 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> IntMap a -> IntMap b #

FunctorWithIndex Int Seq 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> Seq a -> Seq b #

FunctorWithIndex Int NonEmpty 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> NonEmpty a -> NonEmpty b #

FunctorWithIndex Int [] 
Instance details

Defined in WithIndex

Methods

imap :: (Int -> a -> b) -> [a] -> [b] #

FunctorWithIndex Void (Proxy :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Proxy a -> Proxy b #

FunctorWithIndex Void (U1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> U1 a -> U1 b #

FunctorWithIndex Void (V1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> V1 a -> V1 b #

Ix i => FunctorWithIndex i (Array i) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Array i a -> Array i b #

FunctorWithIndex k (Map k) 
Instance details

Defined in WithIndex

Methods

imap :: (k -> a -> b) -> Map k a -> Map k b #

FunctorWithIndex k ((,) k) 
Instance details

Defined in WithIndex

Methods

imap :: (k -> a -> b) -> (k, a) -> (k, b) #

FunctorWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Const e a -> Const e b #

FunctorWithIndex Void (Constant e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> Constant e a -> Constant e b #

FunctorWithIndex i f => FunctorWithIndex i (Rec1 f) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Rec1 f a -> Rec1 f b #

FunctorWithIndex i f => FunctorWithIndex i (Backwards f) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Backwards f a -> Backwards f b #

FunctorWithIndex i m => FunctorWithIndex i (IdentityT m) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> IdentityT m a -> IdentityT m b #

FunctorWithIndex i f => FunctorWithIndex i (Reverse f) 
Instance details

Defined in WithIndex

Methods

imap :: (i -> a -> b) -> Reverse f a -> Reverse f b #

FunctorWithIndex Void (K1 i c :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

imap :: (Void -> a -> b) -> K1 i c a -> K1 i c b #

FunctorWithIndex r ((->) r) 
Instance details

Defined in WithIndex

Methods

imap :: (r -> a -> b) -> (r -> a) -> r -> b #

FunctorWithIndex [Int] Tree 
Instance details

Defined in WithIndex

Methods

imap :: ([Int] -> a -> b) -> Tree a -> Tree b #

FunctorWithIndex i m => FunctorWithIndex (e, i) (ReaderT e m) 
Instance details

Defined in WithIndex

Methods

imap :: ((e, i) -> a -> b) -> ReaderT e m a -> ReaderT e m b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Product f g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> Product f g a -> Product f g b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (Sum f g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> Sum f g a -> Sum f g b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :*: g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> (f :*: g) a -> (f :*: g) b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (Either i j) (f :+: g) 
Instance details

Defined in WithIndex

Methods

imap :: (Either i j -> a -> b) -> (f :+: g) a -> (f :+: g) b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (Compose f g) 
Instance details

Defined in WithIndex

Methods

imap :: ((i, j) -> a -> b) -> Compose f g a -> Compose f g b #

(FunctorWithIndex i f, FunctorWithIndex j g) => FunctorWithIndex (i, j) (f :.: g) 
Instance details

Defined in WithIndex

Methods

imap :: ((i, j) -> a -> b) -> (f :.: g) a -> (f :.: g) b #

Foldable with index

class Foldable f => FoldableWithIndex i (f :: Type -> Type) | f -> i where #

Minimal complete definition

Nothing

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> f a -> b #

Instances

Instances details
FoldableWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Identity a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Identity a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Identity a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Identity a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Identity a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Identity a -> b #

FoldableWithIndex () Par1 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Par1 a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Par1 a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Par1 a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Par1 a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Par1 a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Par1 a -> b #

FoldableWithIndex () Maybe 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (() -> a -> m) -> Maybe a -> m #

ifoldMap' :: Monoid m => (() -> a -> m) -> Maybe a -> m #

ifoldr :: (() -> a -> b -> b) -> b -> Maybe a -> b #

ifoldl :: (() -> b -> a -> b) -> b -> Maybe a -> b #

ifoldr' :: (() -> a -> b -> b) -> b -> Maybe a -> b #

ifoldl' :: (() -> b -> a -> b) -> b -> Maybe a -> b #

FoldableWithIndex Int ZipList 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> ZipList a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> ZipList a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> ZipList a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> ZipList a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> ZipList a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> ZipList a -> b #

FoldableWithIndex Int IntMap 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> IntMap a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> IntMap a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> IntMap a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> IntMap a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> IntMap a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> IntMap a -> b #

FoldableWithIndex Int Seq 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> Seq a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> Seq a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> Seq a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> Seq a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> Seq a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> Seq a -> b #

FoldableWithIndex Int NonEmpty 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> NonEmpty a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> NonEmpty a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> NonEmpty a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> NonEmpty a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> NonEmpty a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> NonEmpty a -> b #

FoldableWithIndex Int [] 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> [a] -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> [a] -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> [a] -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> [a] -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> [a] -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> [a] -> b #

FoldableWithIndex Void (Proxy :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Proxy a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Proxy a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Proxy a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Proxy a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Proxy a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Proxy a -> b #

FoldableWithIndex Void (U1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> U1 a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> U1 a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> U1 a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> U1 a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> U1 a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> U1 a -> b #

FoldableWithIndex Void (V1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> V1 a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> V1 a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> V1 a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> V1 a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> V1 a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> V1 a -> b #

Ix i => FoldableWithIndex i (Array i) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Array i a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Array i a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Array i a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Array i a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Array i a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Array i a -> b #

FoldableWithIndex k (Map k) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (k -> a -> m) -> Map k a -> m #

ifoldMap' :: Monoid m => (k -> a -> m) -> Map k a -> m #

ifoldr :: (k -> a -> b -> b) -> b -> Map k a -> b #

ifoldl :: (k -> b -> a -> b) -> b -> Map k a -> b #

ifoldr' :: (k -> a -> b -> b) -> b -> Map k a -> b #

ifoldl' :: (k -> b -> a -> b) -> b -> Map k a -> b #

FoldableWithIndex k ((,) k) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (k -> a -> m) -> (k, a) -> m #

ifoldMap' :: Monoid m => (k -> a -> m) -> (k, a) -> m #

ifoldr :: (k -> a -> b -> b) -> b -> (k, a) -> b #

ifoldl :: (k -> b -> a -> b) -> b -> (k, a) -> b #

ifoldr' :: (k -> a -> b -> b) -> b -> (k, a) -> b #

ifoldl' :: (k -> b -> a -> b) -> b -> (k, a) -> b #

FoldableWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Const e a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Const e a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Const e a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Const e a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Const e a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Const e a -> b #

FoldableWithIndex Void (Constant e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> Constant e a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> Constant e a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> Constant e a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> Constant e a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> Constant e a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> Constant e a -> b #

FoldableWithIndex i f => FoldableWithIndex i (Rec1 f) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Rec1 f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Rec1 f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Rec1 f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Rec1 f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Rec1 f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Rec1 f a -> b #

FoldableWithIndex i f => FoldableWithIndex i (Backwards f) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Backwards f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Backwards f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Backwards f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Backwards f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Backwards f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Backwards f a -> b #

FoldableWithIndex i m => FoldableWithIndex i (IdentityT m) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 #

ifoldMap' :: Monoid m0 => (i -> a -> m0) -> IdentityT m a -> m0 #

ifoldr :: (i -> a -> b -> b) -> b -> IdentityT m a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> IdentityT m a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> IdentityT m a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> IdentityT m a -> b #

FoldableWithIndex i f => FoldableWithIndex i (Reverse f) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (i -> a -> m) -> Reverse f a -> m #

ifoldMap' :: Monoid m => (i -> a -> m) -> Reverse f a -> m #

ifoldr :: (i -> a -> b -> b) -> b -> Reverse f a -> b #

ifoldl :: (i -> b -> a -> b) -> b -> Reverse f a -> b #

ifoldr' :: (i -> a -> b -> b) -> b -> Reverse f a -> b #

ifoldl' :: (i -> b -> a -> b) -> b -> Reverse f a -> b #

FoldableWithIndex Void (K1 i c :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Void -> a -> m) -> K1 i c a -> m #

ifoldMap' :: Monoid m => (Void -> a -> m) -> K1 i c a -> m #

ifoldr :: (Void -> a -> b -> b) -> b -> K1 i c a -> b #

ifoldl :: (Void -> b -> a -> b) -> b -> K1 i c a -> b #

ifoldr' :: (Void -> a -> b -> b) -> b -> K1 i c a -> b #

ifoldl' :: (Void -> b -> a -> b) -> b -> K1 i c a -> b #

FoldableWithIndex [Int] Tree 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ([Int] -> a -> m) -> Tree a -> m #

ifoldMap' :: Monoid m => ([Int] -> a -> m) -> Tree a -> m #

ifoldr :: ([Int] -> a -> b -> b) -> b -> Tree a -> b #

ifoldl :: ([Int] -> b -> a -> b) -> b -> Tree a -> b #

ifoldr' :: ([Int] -> a -> b -> b) -> b -> Tree a -> b #

ifoldl' :: ([Int] -> b -> a -> b) -> b -> Tree a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Product f g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Product f g a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> Product f g a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> Product f g a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (Sum f g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> Sum f g a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> Sum f g a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> Sum f g a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :*: g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :*: g) a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :*: g) a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :*: g) a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (Either i j) (f :+: g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m #

ifoldMap' :: Monoid m => (Either i j -> a -> m) -> (f :+: g) a -> m #

ifoldr :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b #

ifoldl :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b #

ifoldr' :: (Either i j -> a -> b -> b) -> b -> (f :+: g) a -> b #

ifoldl' :: (Either i j -> b -> a -> b) -> b -> (f :+: g) a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (Compose f g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m #

ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> Compose f g a -> m #

ifoldr :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b #

ifoldl :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b #

ifoldr' :: ((i, j) -> a -> b -> b) -> b -> Compose f g a -> b #

ifoldl' :: ((i, j) -> b -> a -> b) -> b -> Compose f g a -> b #

(FoldableWithIndex i f, FoldableWithIndex j g) => FoldableWithIndex (i, j) (f :.: g) 
Instance details

Defined in WithIndex

Methods

ifoldMap :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m #

ifoldMap' :: Monoid m => ((i, j) -> a -> m) -> (f :.: g) a -> m #

ifoldr :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b #

ifoldl :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b #

ifoldr' :: ((i, j) -> a -> b -> b) -> b -> (f :.: g) a -> b #

ifoldl' :: ((i, j) -> b -> a -> b) -> b -> (f :.: g) a -> b #

itraverse_ :: (FoldableWithIndex i t, Applicative f) => (i -> a -> f b) -> t a -> f () #

ifor_ :: (FoldableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f () #

itoList :: FoldableWithIndex i f => f a -> [(i, a)] #

Traversable with index

class (FunctorWithIndex i t, FoldableWithIndex i t, Traversable t) => TraversableWithIndex i (t :: Type -> Type) | t -> i where #

Minimal complete definition

Nothing

Methods

itraverse :: Applicative f => (i -> a -> f b) -> t a -> f (t b) #

Instances

Instances details
TraversableWithIndex () Identity 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Identity a -> f (Identity b) #

TraversableWithIndex () Par1 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Par1 a -> f (Par1 b) #

TraversableWithIndex () Maybe 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (() -> a -> f b) -> Maybe a -> f (Maybe b) #

TraversableWithIndex Int ZipList 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> ZipList a -> f (ZipList b) #

TraversableWithIndex Int IntMap 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> IntMap a -> f (IntMap b) #

TraversableWithIndex Int Seq 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> Seq a -> f (Seq b) #

TraversableWithIndex Int NonEmpty 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> NonEmpty a -> f (NonEmpty b) #

TraversableWithIndex Int [] 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> [a] -> f [b] #

TraversableWithIndex Void (Proxy :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Proxy a -> f (Proxy b) #

TraversableWithIndex Void (U1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> U1 a -> f (U1 b) #

TraversableWithIndex Void (V1 :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> V1 a -> f (V1 b) #

Ix i => TraversableWithIndex i (Array i) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (i -> a -> f b) -> Array i a -> f (Array i b) #

TraversableWithIndex k (Map k) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (k -> a -> f b) -> Map k a -> f (Map k b) #

TraversableWithIndex k ((,) k) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (k -> a -> f b) -> (k, a) -> f (k, b) #

TraversableWithIndex Void (Const e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Const e a -> f (Const e b) #

TraversableWithIndex Void (Constant e :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> Constant e a -> f (Constant e b) #

TraversableWithIndex i f => TraversableWithIndex i (Rec1 f) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) #

TraversableWithIndex i f => TraversableWithIndex i (Backwards f) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Backwards f a -> f0 (Backwards f b) #

TraversableWithIndex i m => TraversableWithIndex i (IdentityT m) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (i -> a -> f b) -> IdentityT m a -> f (IdentityT m b) #

TraversableWithIndex i f => TraversableWithIndex i (Reverse f) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (i -> a -> f0 b) -> Reverse f a -> f0 (Reverse f b) #

TraversableWithIndex Void (K1 i c :: Type -> Type) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => (Void -> a -> f b) -> K1 i c a -> f (K1 i c b) #

TraversableWithIndex [Int] Tree 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f => ([Int] -> a -> f b) -> Tree a -> f (Tree b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Product f g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Product f g a -> f0 (Product f g b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (Sum f g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> Sum f g a -> f0 (Sum f g b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :*: g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (Either i j) (f :+: g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => (Either i j -> a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (Compose f g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ((i, j) -> a -> f0 b) -> Compose f g a -> f0 (Compose f g b) #

(TraversableWithIndex i f, TraversableWithIndex j g) => TraversableWithIndex (i, j) (f :.: g) 
Instance details

Defined in WithIndex

Methods

itraverse :: Applicative f0 => ((i, j) -> a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) #

ifor :: (TraversableWithIndex i t, Applicative f) => t a -> (i -> a -> f b) -> f (t b) #