vec3.h
1/*
2** ClanLib SDK
3** Copyright (c) 1997-2020 The ClanLib Team
4**
5** This software is provided 'as-is', without any express or implied
6** warranty. In no event will the authors be held liable for any damages
7** arising from the use of this software.
8**
9** Permission is granted to anyone to use this software for any purpose,
10** including commercial applications, and to alter it and redistribute it
11** freely, subject to the following restrictions:
12**
13** 1. The origin of this software must not be misrepresented; you must not
14** claim that you wrote the original software. If you use this software
15** in a product, an acknowledgment in the product documentation would be
16** appreciated but is not required.
17** 2. Altered source versions must be plainly marked as such, and must not be
18** misrepresented as being the original software.
19** 3. This notice may not be removed or altered from any source distribution.
20**
21** Note: Some of the libraries ClanLib may link to may have additional
22** requirements or restrictions.
23**
24** File Author(s):
25**
26** Magnus Norddahl
27** Mark Page
28** Harry Storbacka
29*/
30
31#pragma once
32
33#include <cmath>
34#include "vec2.h"
35#include "vec4.h"
36
37namespace clan
38{
41
42 template<typename Type>
43 class Vec2;
44
45 template<typename Type>
46 class Vec3;
47
48 template<typename Type>
49 class Vec4;
50
51 template<typename Type>
52 class Mat2;
53
54 template<typename Type>
55 class Mat3;
56
57 template<typename Type>
58 class Mat4;
59
60 template<typename Type>
61 class Sizex;
62
63 template<typename Type>
64 class Pointx;
65
66 class Angle;
67
73 template<typename Type>
74 class Vec3
75 {
76 public:
77 typedef Type datatype;
78
79 union { Type x; Type s; Type r; };
80 union { Type y; Type t; Type g; };
81 union { Type z; Type u; Type b; };
82
83 Vec3() : x(0), y(0), z(0) {}
84 explicit Vec3(const Type &scalar) : x(scalar), y(scalar), z(scalar) {}
85 explicit Vec3(const Vec2<Type> &copy, const Type &p3) : x(copy.x), y(copy.y), z(p3) {}
86 explicit Vec3(const Vec4<Type> &copy): x(copy.x), y(copy.y), z(copy.z) {}
87
88 Vec3(const Vec3<Type> &copy) = default;
89
90 template<typename OtherType, typename std::enable_if_t<std::is_integral<Type>::value && !std::is_integral<OtherType>::value, int> = 0>
91 Vec3(const Vec3<OtherType>& copy) : x(static_cast<Type>(std::floor(copy.x + 0.5f))), y(static_cast<Type>(std::floor(copy.y + 0.5f))), z(static_cast<Type>(std::floor(copy.z + 0.5f))) {}
92
93 template<typename OtherType, typename std::enable_if_t<!std::is_integral<Type>::value || std::is_integral<OtherType>::value, int> = 0>
94 Vec3(const Vec3<OtherType>& copy) : x(static_cast<Type>(copy.x)), y(static_cast<Type>(copy.y)), z(static_cast<Type>(copy.z)) {}
95
96 explicit Vec3(const Type &p1, const Type &p2, const Type &p3) : x(p1), y(p2), z(p3) {}
97 explicit Vec3(const Type *array_xyz) : x(array_xyz[0]), y(array_xyz[1]), z(array_xyz[2]) {}
98
104 static Vec3<Type> normalize(const Vec3<Type>& vector);
105
109 static Type dot(const Vec3<Type>& vector1, const Vec3<Type>& vector2) { return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z; }
110
116 static Vec3<Type> cross(const Vec3<Type>& vector1, const Vec3<Type>& vector2);
117
124 static Vec3<Type> rotate(const Vec3<Type>& vector, const Angle &angle, const Vec3<Type>& axis);
125
131 static Vec3<Type> round(const Vec3<Type>& vector);
132
136 static Vec3<Type> reflect(const Vec3<Type>& incident, const Vec3<Type>& normal);
137
143 static bool is_equal(const Vec3<Type> &first, const Vec3<Type> &second, Type epsilon)
144 {
145 Type diff_x = second.x - first.x; Type diff_y = second.y - first.y; Type diff_z = second.z - first.z;
146 return (diff_x >= -epsilon && diff_x <= epsilon && diff_y >= -epsilon && diff_y <= epsilon && diff_z >= -epsilon && diff_z <= epsilon);
147 }
148
153 Type length() const;
154
160
167 Type dot(const Vec3<Type>& vector) const { return x*vector.x + y*vector.y + z*vector.z; }
168
174 Angle angle(const Vec3<Type>& vector) const;
175
181 Angle angle_normed(const Vec3<Type>& vector) const;
182
188 Type distance(const Vec3<Type>& vector) const;
189
195 Vec3<Type> &cross(const Vec3<Type>& vector);
196
202 Vec3<Type> &rotate(const Angle &angle, const Vec3<Type>& axis);
203
209
214 bool is_equal(const Vec3<Type> &other, Type epsilon) const { return Vec3<Type>::is_equal(*this, other, epsilon); }
215
217 void operator += (const Vec3<Type>& vector) { x += vector.x; y += vector.y; z += vector.z; }
218
220 void operator += (Type value) { x += value; y += value; z += value; }
221
223 void operator -= (const Vec3<Type>& vector) { x -= vector.x; y -= vector.y; z -= vector.z; }
224
226 void operator -= (Type value) { x -= value; y -= value; z -= value; }
227
229 Vec3<Type> operator - () const { return Vec3<Type>(-x, -y, -z); }
230
232 void operator *= (const Vec3<Type>& vector) { x *= vector.x; y *= vector.y; z *= vector.z; }
233
235 void operator *= (Type value) { x *= value; y *= value; z *= value; }
236
238 void operator /= (const Vec3<Type>& vector) { x /= vector.x; y /= vector.y; z /= vector.z; }
239
241 void operator /= (Type value) { x /= value; y /= value; z /= value; }
242
244 Vec3<Type> &operator = (const Vec3<Type>& vector) = default;
245
247 bool operator == (const Vec3<Type>& vector) const { return ((x == vector.x) && (y == vector.y) && (z == vector.z)); }
248
250 bool operator != (const Vec3<Type>& vector) const { return ((x != vector.x) || (y != vector.y) || (z != vector.z)); }
251
253 bool operator < (const Vec3<Type>& vector) const { return z < vector.z || (z == vector.z && (y < vector.y || (y == vector.y && x < vector.x))); }
254 };
255
257 template<typename Type>
258 Vec3<Type> operator + (const Vec3<Type>& v1, const Vec3<Type>& v2) { return Vec3<Type>(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z); }
259
261 template<typename Type>
262 Vec3<Type> operator + (Type s, const Vec3<Type>& v) { return Vec3<Type>(s + v.x, s + v.y, s + v.z); }
263
265 template<typename Type>
266 Vec3<Type> operator + (const Vec3<Type>& v, Type s) { return Vec3<Type>(v.x + s, v.y + s, v.z + s); }
267
269 template<typename Type>
270 Vec3<Type> operator - (const Vec3<Type>& v1, const Vec3<Type>& v2) { return Vec3<Type>(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z); }
271
273 template<typename Type>
274 Vec3<Type> operator - (Type s, const Vec3<Type>& v) { return Vec3<Type>(s - v.x, s - v.y, s - v.z); }
275
277 template<typename Type>
278 Vec3<Type> operator - (const Vec3<Type>& v, Type s) { return Vec3<Type>(v.x - s, v.y - s, v.z - s); }
279
281 template<typename Type>
282 Vec3<Type> operator * (const Vec3<Type>& v1, const Vec3<Type>& v2) { return Vec3<Type>(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); }
283
285 template<typename Type>
286 Vec3<Type> operator * (Type s, const Vec3<Type>& v) { return Vec3<Type>(s * v.x, s * v.y, s * v.z); }
287
289 template<typename Type>
290 Vec3<Type> operator * (const Vec3<Type>& v, Type s) { return Vec3<Type>(v.x * s, v.y * s, v.z * s); }
291
293 template<typename Type>
294 Vec3<Type> operator / (const Vec3<Type>& v1, const Vec3<Type>& v2) { return Vec3<Type>(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z); }
295
297 template<typename Type>
298 Vec3<Type> operator / (Type s, const Vec3<Type>& v) { return Vec3<Type>(s / v.x, s / v.y, s / v.z); }
299
301 template<typename Type>
302 Vec3<Type> operator / (const Vec3<Type>& v, Type s) { return Vec3<Type>(v.x / s, v.y / s, v.z / s); }
303
306 template<typename Type>
308 {
309 return Vec3<Type>(
310 matrix[0 * 3 + 0] * v.x + matrix[0 * 3 + 1] * v.y + matrix[0 * 3 + 2] * v.z,
311 matrix[1 * 3 + 0] * v.x + matrix[1 * 3 + 1] * v.y + matrix[1 * 3 + 2] * v.z,
312 matrix[2 * 3 + 0] * v.x + matrix[2 * 3 + 1] * v.y + matrix[2 * 3 + 2] * v.z);
313 }
314
317 template<typename Type>
319 {
320 return Vec3<Type>(
321 matrix[0 * 3 + 0] * v.x + matrix[1 * 3 + 0] * v.y + matrix[2 * 3 + 0] * v.z,
322 matrix[0 * 3 + 1] * v.x + matrix[1 * 3 + 1] * v.y + matrix[2 * 3 + 1] * v.z,
323 matrix[0 * 3 + 2] * v.x + matrix[1 * 3 + 2] * v.y + matrix[2 * 3 + 2] * v.z);
324 }
325
326 template<typename Type>
327 inline Type Vec3<Type>::length() const { return (Type)floor(sqrt(float(x*x + y*y + z*z)) + 0.5f); }
328
329 template<>
330 inline double Vec3<double>::length() const { return sqrt(x*x + y*y + z*z); }
331
332 template<>
333 inline float Vec3<float>::length() const { return sqrt(x*x + y*y + z*z); }
334
335 template<typename Type>
336 inline Vec3<Type> &Vec3<Type>::normalize() { Type f = length(); if (f != 0) { x /= f; y /= f; z /= f; } return *this; }
337
338 template<typename Type>
339 inline Vec3<Type> Vec3<Type>::normalize(const Vec3<Type>& vector) { Vec3<Type> dest(vector); dest.normalize(); return dest; }
340
349
351}
Angle class.
Definition angle.h:60
3D matrix
Definition vec4.h:55
2D vector
Definition vec4.h:43
3D vector
Definition vec4.h:46
bool operator!=(const Vec3< Type > &vector) const
!= operator.
Definition vec3.h:250
Type datatype
Definition vec3.h:77
Vec3< Type > & operator=(const Vec3< Type > &vector)=default
= operator.
Vec3(const Vec3< Type > &copy)=default
bool is_equal(const Vec3< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition vec3.h:214
static bool is_equal(const Vec3< Type > &first, const Vec3< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition vec3.h:143
Vec3< Type > operator-() const
operator.
Definition vec3.h:229
static Vec3< Type > cross(const Vec3< Type > &vector1, const Vec3< Type > &vector2)
Calculate the cross product between two vectors.
Vec3(const Type *array_xyz)
Definition vec3.h:97
Type s
Definition vec3.h:79
Vec3()
Definition vec3.h:83
Type r
Definition vec3.h:79
static Type dot(const Vec3< Type > &vector1, const Vec3< Type > &vector2)
Dot products between two vectors.
Definition vec3.h:109
Vec3< Type > & rotate(const Angle &angle, const Vec3< Type > &axis)
Rotate this vector around an axis. Same as glRotate[f|d](angle, a);.
static Vec3< Type > reflect(const Vec3< Type > &incident, const Vec3< Type > &normal)
Calculate the reflection direction for an incident vector.
static Vec3< Type > round(const Vec3< Type > &vector)
Rounds all components on a vector.
Vec3< Type > & round()
Rounds all components on this vector.
Vec3(const Type &p1, const Type &p2, const Type &p3)
Definition vec3.h:96
Vec3(const Type &scalar)
Definition vec3.h:84
Type z
Definition vec3.h:81
Type y
Definition vec3.h:80
Type g
Definition vec3.h:80
Type t
Definition vec3.h:80
bool operator<(const Vec3< Type > &vector) const
< operator.
Definition vec3.h:253
Angle angle_normed(const Vec3< Type > &vector) const
Calculate the angle between this vector and an other vector, where the vectors are unit vectors.
void operator-=(const Vec3< Type > &vector)
-= operator.
Definition vec3.h:223
void operator+=(const Vec3< Type > &vector)
+= operator.
Definition vec3.h:217
void operator/=(const Vec3< Type > &vector)
/= operator.
Definition vec3.h:238
Vec3< Type > & cross(const Vec3< Type > &vector)
Calculate the cross product between this vector and an other vector.
Vec3(const Vec4< Type > &copy)
Definition vec3.h:86
Vec3(const Vec2< Type > &copy, const Type &p3)
Definition vec3.h:85
Type u
Definition vec3.h:81
Type distance(const Vec3< Type > &vector) const
Calculate the distance between this vector and an other vector.
Type x
Definition vec3.h:79
Type b
Definition vec3.h:81
static Vec3< Type > rotate(const Vec3< Type > &vector, const Angle &angle, const Vec3< Type > &axis)
Rotate a vector around an axis. Same as glRotate[f|d](angle, a);.
bool operator==(const Vec3< Type > &vector) const
== operator.
Definition vec3.h:247
Angle angle(const Vec3< Type > &vector) const
Calculate the angle between this vector and an other vector.
Type dot(const Vec3< Type > &vector) const
Dot products this vector with an other vector.
Definition vec3.h:167
Vec3(const Vec3< OtherType > &copy)
Definition vec3.h:91
void operator*=(const Vec3< Type > &vector)
*= operator.
Definition vec3.h:232
4D vector
Definition vec4.h:75
Vec2< Type > operator/(const Vec2< Type > &v1, const Vec2< Type > &v2)
/ operator.
Definition vec2.h:306
static Vec3< Type > normalize(const Vec3< Type > &vector)
Normalizes a vector.
Definition vec3.h:339
Vec3< unsigned char > Vec3ub
Definition vec3.h:341
Type length() const
Returns the length (magnitude) of this vector.
Definition vec3.h:327
Vec3< Type > & normalize()
Normalizes this vector.
Definition vec3.h:336
Vec3< unsigned short > Vec3us
Definition vec3.h:343
Vec3< unsigned int > Vec3ui
Definition vec3.h:345
Vec3< float > Vec3f
Definition vec3.h:347
Vec2< Type > operator-(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition vec2.h:282
Vec2< Type > operator+(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition vec2.h:270
Vec3< double > Vec3d
Definition vec3.h:348
Vec3< char > Vec3b
Definition vec3.h:342
Vec2< Type > operator*(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition vec2.h:294
Vec3< short > Vec3s
Definition vec3.h:344
Vec3< int > Vec3i
Definition vec3.h:346
Definition clanapp.h:36
@ length
value is a keyword
@ angle
value is a color